




Scan the QR code to access this session's interactivity

OR

Go to slido.com and enter code # 2757269



#### **Scientific Planning Committee**



Hans Katzberg, MD, FRCPC, MSc

Professor of Medicine (Neurology)
University of Toronto
Prosserman Centre for Neuromuscular Disease
Krembil Brain Institute



Carolina Barnett-Tapia, MD, PhD

Associate Professor of Medicine (Neurology), University of Toronto Prosserman Centre for Neuromuscular Disease



|                               | Relationship with Commercial Entities                                                                                                                                                         | Other                                          |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Dr. Carolina<br>Barnett-Tapia | Consultant: Alexion, Argenx, Johnson & Johnson, Novartis, NMD Pharma, UCB Clinical Trials: Alexion, argenx                                                                                    | Developer of the MGII, might receive royalties |
| Dr. Hans Katzberg             | Consultant & Clinical Trials: Alexion, Alnylam,<br>ArgenX, AstraZeneca, Biocryst, Cour, CSL<br>Behring, Dyne, Dianthus, Johnson and Johnson,<br>Merz, Octapharma, Roche, Takaeda, Terumo, UCB | N/A                                            |

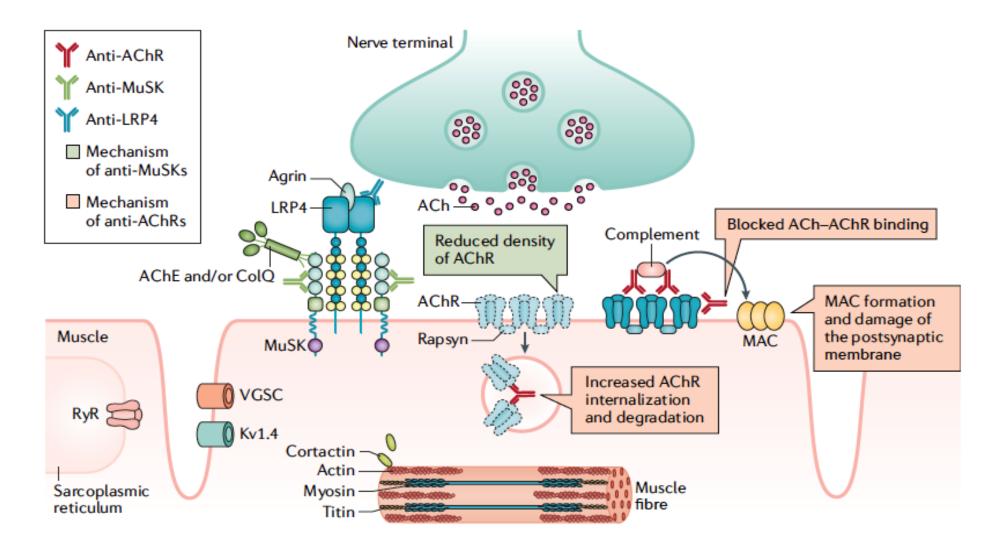
#### **Learning Objectives**

After this session, you should be better able to:

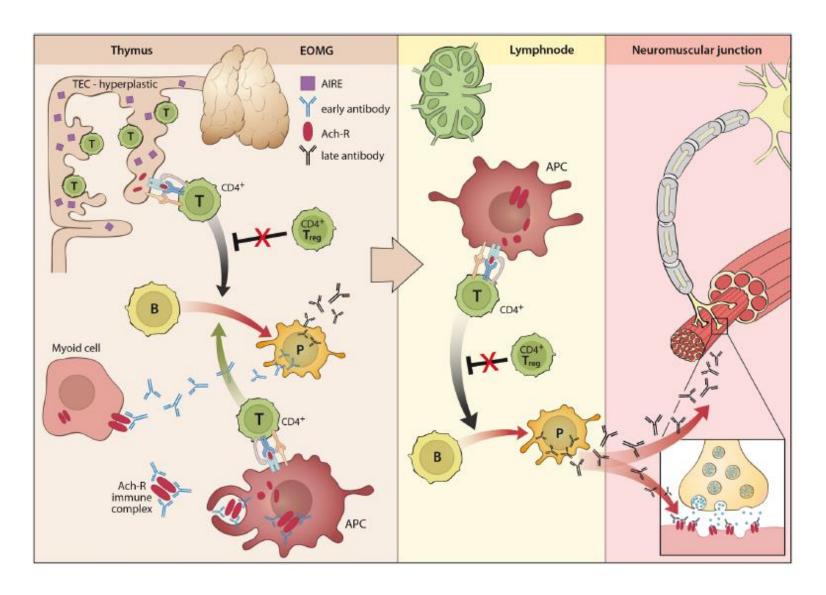
Discuss the mechanisms and clinical outcomes used to evaluate emerging biologic therapies in myasthenia gravis

Describe novel
biologic strategies
beyond FcRn
inhibition, including
complement-targeted
and CAR-T cell
therapies

Assess the clinical application and evolving role of FcRn inhibitors in the treatment of myasthenia gravis


## Advances in Myasthenia Gravis

Emerging Biological Therapies and Clinical Frontiers


# Current Treatment Landscape and Outcomes

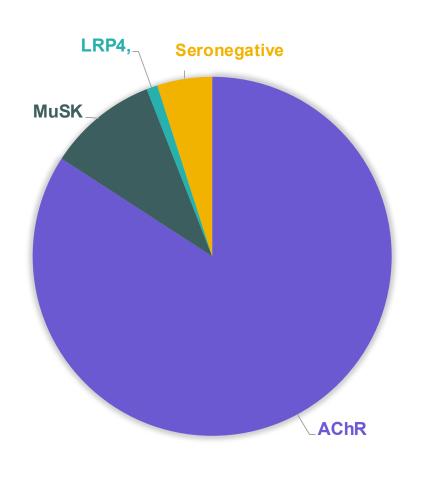
Carolina Barnett-Tapia MD, PhD

## Neuromuscular junction targets in the pathogenesis of myasthenia gravis



#### Overview of the Pathogenesis of Autoimmune MG








## Poll #1: Approximately what percentage of patients with MG are positive for AChR antibodies?



#### Pathogenic Antibodies in Myasthenia





#### AChR Antibodies (IgG1 and IgG3)

Functional AChR inhibition

- Activate complement
- Degradation of AChR



#### MuSK antibodies (IgG4)

- Inhibit MuSK activation
- Do not activate complement

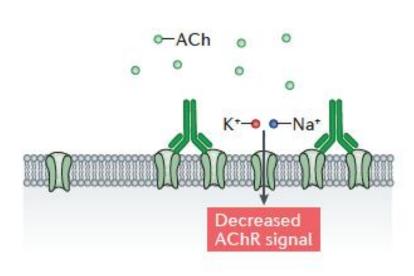




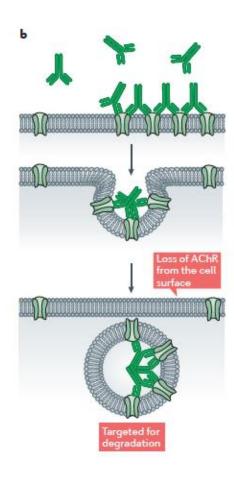


圭

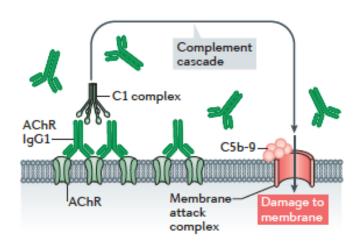
#### **Seronegative**


- This number has been decreasing.
- Some seronegative may be positive with cell-based assay

~10%

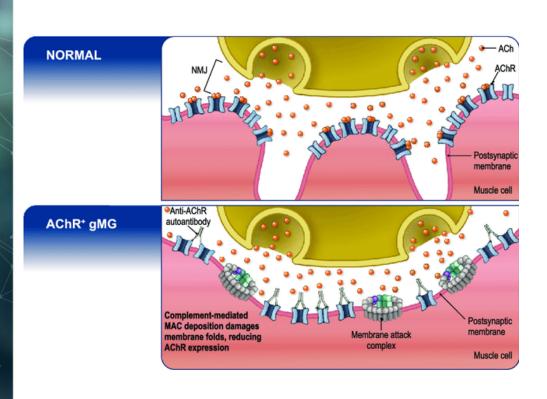

80-90%

5%

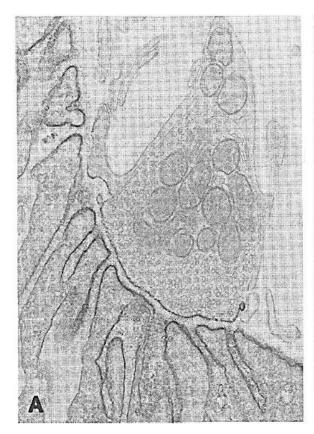

#### Pathogenic Mechanisms of AChR Antibodies in MG



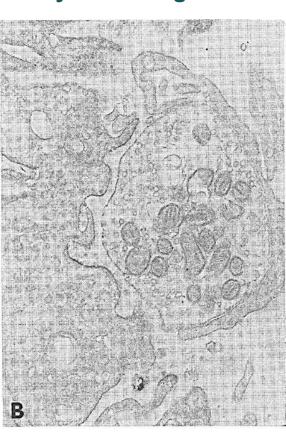
Direct blocking of ACh current



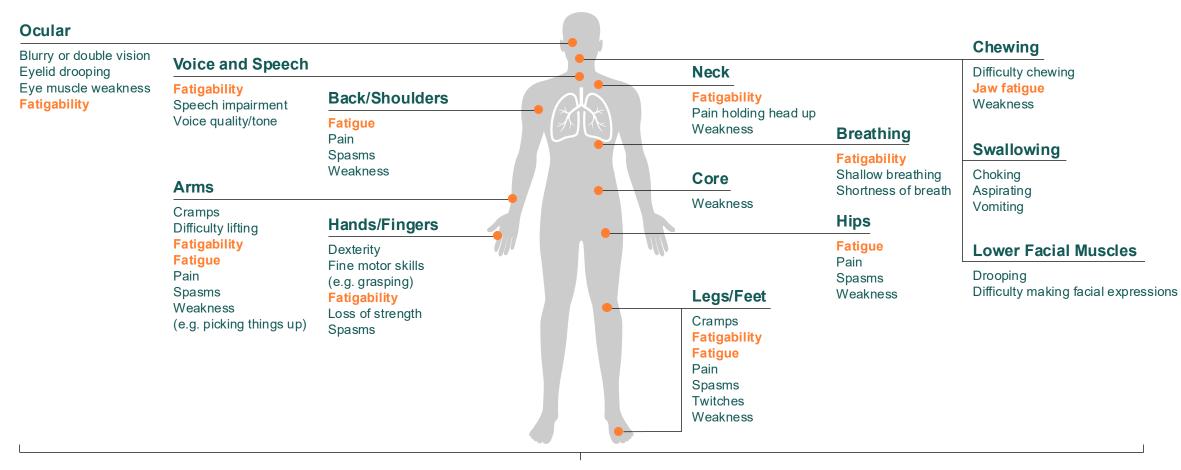

Internalization and degradation of ACRs




Complement deposit and muscle membrane damage


## Destruction of the NMJ by Complement in AChR Ab+ MG

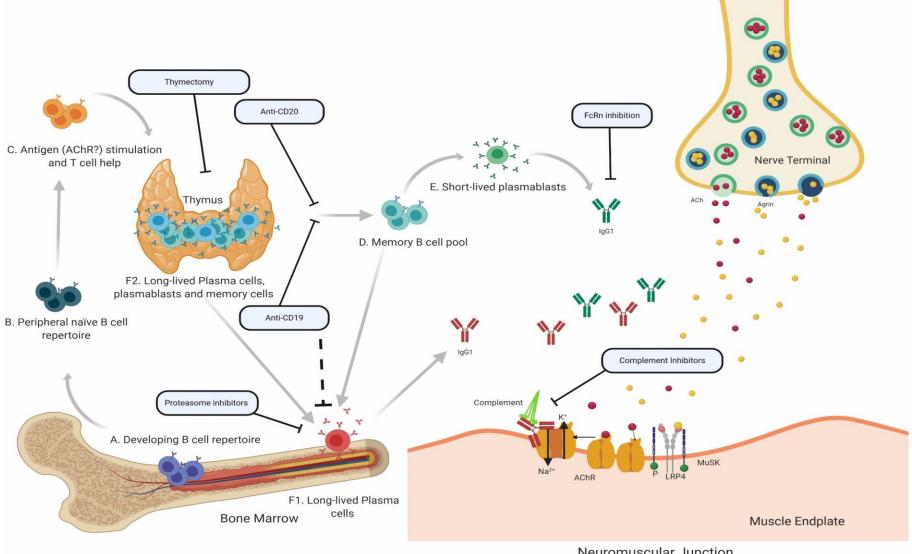



#### **Healthy control**



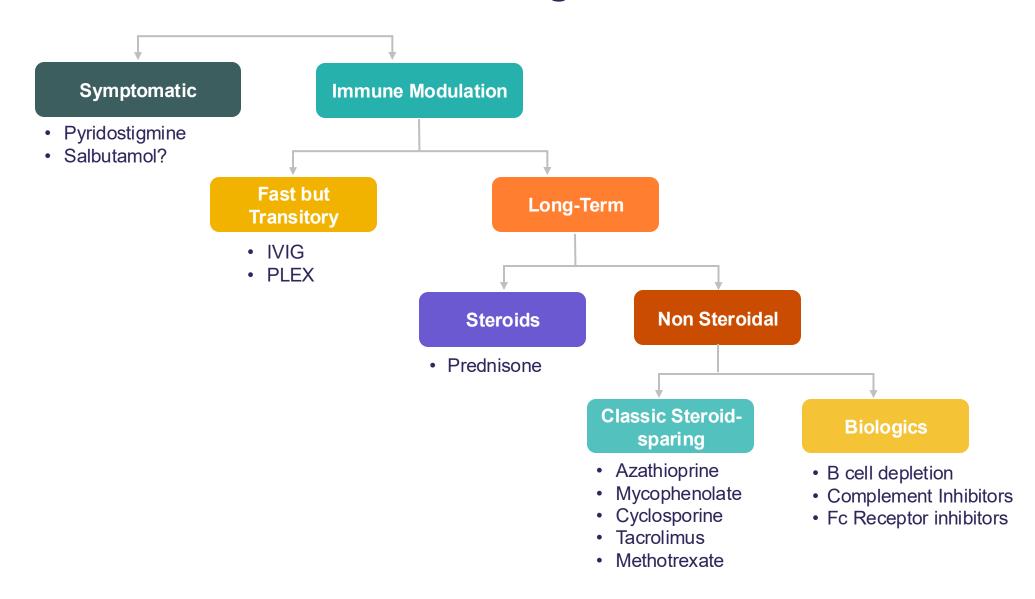
#### **Myasthenia gravis**




#### **Fatigable Weakness**

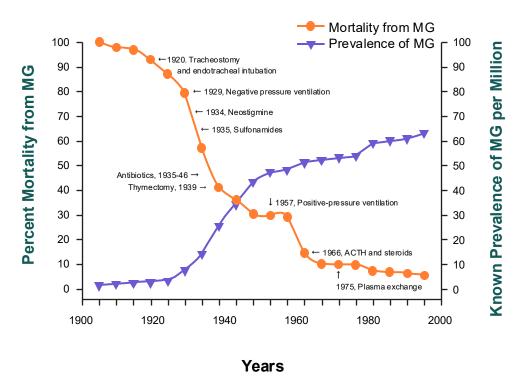


#### Overall Symptoms (location unspecified, or described as a general experience)


Cognitive impairment (difficulty focusing, memory), Fatigability (worsening of impairment), Mental fatigue (too exhausted to think or mentally motivate),
Pain (general muscle soreness or achiness), Physical fatigue (lack of energy, a feeling of depletion, or lethargy), Weakness (overall strength)

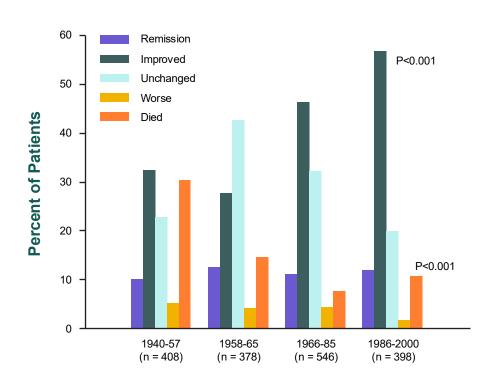
#### Therapeutic Approaches in Myasthenia Gravis




AChE inhibitors (symptomatic)

#### **Autoimmune MG: Pharmacologic Treatments**




#### **Long-Term Outcomes**

#### MG-related mortality has decreased



**FIGURE 1.** Known prevalence and mortality from MG during 1900 to 2000.

## Most patients respond to treatment Refractory MG ~ 5-10%



#### **Treatment Goals**

To achieve best possible symptom control (ideally no symptoms) with minimal toxicity from interventions.

Multiple cohorts have shown than a large proportion of people with MG are not meeting treatment goals



Quantitative Myasthenia Gravis Score (QMGS) Myasthenia Gravis Activities of Daily Living (MG-ADL)

Myasthenia Gravis Composite (MGC)

Myasthenia Gravis Impairment Index (MGII)





## Poll #2: Which of these scales do you use most often in your practice?



#### **QMGS**

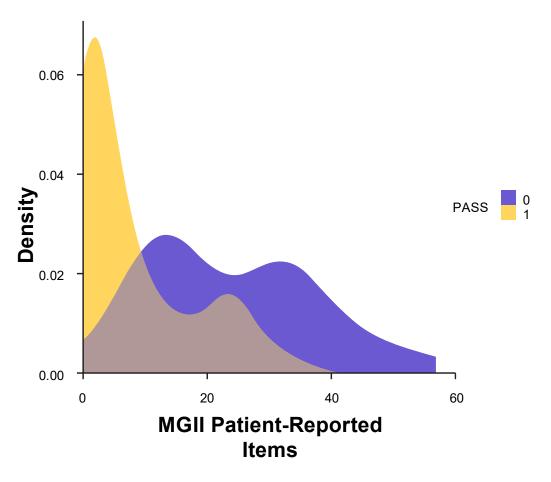
| Items                                                           | None               | Mild                                | Moderate                                        | Severe                              |
|-----------------------------------------------------------------|--------------------|-------------------------------------|-------------------------------------------------|-------------------------------------|
| Grade                                                           | 0                  | 1                                   | 2                                               | 3                                   |
| Double vision (lateral gaze), sec                               | 60                 | 11-59                               | 1-10                                            | Spontaneous                         |
| Ptosis (upward gaze), sec                                       | 60                 | 11-59                               | 1-10                                            | Spontaneous                         |
| Facial muscles                                                  | Normal lid closure | Complete, weak, some resistance     | Complete, without resistance                    | Incomplete                          |
| Swallowing 4 oz water (1/2 cup)                                 | Normal             | Minimal coughing or throat clearing | Severe coughing, choking or nasal regurgitation | Cannot swallow (test not attempted) |
| Speech following counting aloud from 1-50 (onset of dysarthria) | None at #50        | Dysarthria at #30-#49               | Dysarthria at #10-#29                           | Dysarthria at #9                    |
| Right arm outstretched (90 degrees, sitting), sec               | 240                | 90-239                              | 10-89                                           | 0-9                                 |
| Left arm outstretched (90 degrees, sitting), sec                | 240                | 90-239                              | 10-89                                           | 0-9                                 |
| Forced vital capacity                                           | ≥80%               | 65%-79%                             | 50%-64%                                         | <50%                                |
| Right hand grip, kg<br>Men<br>Women                             | ≥45<br>≥30         | 15-44<br>10-29                      | 5-14<br>5-9                                     | 0-4<br>0-4                          |
| Left hand grip, kg<br>Men<br>Women                              | ≥35<br>≥25         | 15-34<br>10-24                      | 5-14<br>5-9                                     | 0-4<br>0-4                          |
| Head, lifted (45%, supine), seconds                             | 120                | 30-119                              | 1-29                                            | 0                                   |
| Right leg outstretched (45%-50%, supine), sec                   | 100                | 31-99                               | 1-30                                            | 0                                   |
| Left leg outstretched (45%-50%, supine), sec                    | 100                | 31-99                               | 1-30                                            | 0                                   |
|                                                                 |                    |                                     | Total QM                                        | G score (range, 0-39)               |

#### **MG-ADL**

| Grade                                                | 0      | 1                                        | 2                                                 | 3                                | Score<br>(0, 1, 2, 3) |
|------------------------------------------------------|--------|------------------------------------------|---------------------------------------------------|----------------------------------|-----------------------|
| 1. Talking                                           | Normal | Intermittent slurring of nasal speech    | Constant slurring or nasal, but can be understood | Difficult to understand speech   |                       |
| 2. Chewing                                           | Normal | Fatigue with solid food                  | Fatigue with soft food                            | Gastric tube                     |                       |
| 3. Swallowing                                        | Normal | Rare episode of choking                  | Frequent choking, necessitating changes in diet   | Gastric tube                     |                       |
| 4. Breathing                                         | Normal | Shortness of breath with exertion        | Shortness of breath at rest                       | Ventilator<br>dependence         |                       |
| 5. Impairment of ability to brush teeth or comb hair | None   | Extra effort, but no rest periods needed | Rest periods needed                               | Cannot do one of these functions |                       |
| 6. Impairment of ability to arise from a chair       | None   | Mild, sometimes uses arms                | Moderate, always uses arms                        | Severe, requires assistance      |                       |
| 7. Double vision                                     | None   | Occurs, but not daily                    | Daily, but not constant                           | Constant                         |                       |
| 8. Eyelid droop                                      | None   | Occurs, but not daily                    | Daily, but not constant                           | Constant                         |                       |
| Total MG-ADL score (range, 0-24)                     |        |                                          |                                                   |                                  |                       |

#### **Myasthenia Gravis Composite**

| Items                                                                | Scores           |                                                                              |                                                                            |                                                     |
|----------------------------------------------------------------------|------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------|
| Ptosis, upward gaze (physician examination)                          | <b>0 =</b> >45 s | <b>1 =</b> 11–45 s                                                           | <b>2 =</b> 1–10 s                                                          | 3 = Immediate                                       |
| Double vision on lateral gaze, left or right (physician examination) | <b>0 =</b> >45 s | <b>1 =</b> 11–45 s                                                           | <b>3 =</b> 1–10 s                                                          | 4 = Immediate                                       |
| Eye closure (physician examination)                                  | 0 = Normal       | <ul><li>0 = Mild weakness</li><li>(can be forced open with effort)</li></ul> | 1 = Moderate weakness<br>(can be forced open easily)                       | 2 = Severe weakness<br>(unable to keep eyes closed) |
| Talking (patient history)                                            | 0 = Normal       | 2 = Intermittent slurring or nasal speech                                    | <b>4 =</b> Constant slurring or nasal but can be understood                | 6 = Difficult to understand speech                  |
| Chewing (patient history)                                            | 0 = Normal       | 2 = Fatigue with solid food                                                  | 4 = Fatigue with soft food                                                 | 6 = Gastric tube                                    |
| Swallowing (patient history)                                         | 0 = Normal       | 2 = Rare episode of choking or trouble swallowing                            | <b>5 =</b> Frequent trouble swallowing (eg, necessitating changes in diet) | 6 = Gastric tube                                    |
| Breathing (thought to be caused by MG)                               | 0 = Normal       | 2 = Shortness of breath with exertion                                        | 4 = Shortness of breath at rest                                            | 9 = Ventilator dependence                           |
| Neck flexion or extension (weakest) (physician examination)          | 0 = Normal       | 1 = Mild weakness                                                            | <b>3</b> <sup>a</sup> = Moderate weakness<br>(ie, ≈50%±15%)                | 4 = Severe weakness                                 |
| Shoulder abduction (physician examination)                           | 0 = Normal       | 2 = Mild weakness                                                            | <b>4</b> <sup>a</sup> = Moderate weakness (ie, ≈50%±15%)                   | 5 = Severe weakness                                 |
| Hip flexion (physician examination)                                  | 0 = Normal       | 2 = Mild weakness                                                            | <b>4</b> <sup>a</sup> = Moderate weakness (ie, ≈50%±15%)                   | 5 = Severe weakness                                 |
| Total MGC score (range, 0-50)                                        |                  |                                                                              |                                                                            |                                                     |


#### **MGII**

- 22 patient-reported items
- 6 examination items
- Total Score
- Ocular Score
- Generalized Score

| MG Impairment Ir                                                                                                                                                                                                     | IG Impairment Index (MGII)™ - Patient Questionnaire Name: Date: |                                             |                                                       |                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|-------------------------------------------------|
| INSTRUCTIONS: Please answer the following questions regarding your symptoms. Only consider those that you think are related to myasthenia. Check the answer that best describes your symptoms over the past 2 weeks. |                                                                 |                                             |                                                       |                                                 |
| PROBLEMS WITH YOUR EYES: P                                                                                                                                                                                           | lease answ                                                      | er regarding the                            | e past 2 weeks.                                       |                                                 |
| 1. Double vision throughout the day Have you experienced episodes of double vision? If yes, at what time do they occur (on average)?                                                                                 | No Double<br>Vision                                             | Episodes only in the evenings               | Episodes starting in the afternoons                   | Constant or present most of the day             |
| 2. Double vision with activities                                                                                                                                                                                     | 0                                                               | 1                                           | 2                                                     | 3                                               |
| Have you experienced double vision with activities such as reading, driving, watching TV or using a computer? If                                                                                                     | No Double<br>Vision                                             | After more than 1 hour                      | After less than 1 hour, but not immediately           | Constant double vision or it starts immediately |
| yes, how long does it take (on average) before the double vision occurs?                                                                                                                                             | 0                                                               | 1                                           | 2                                                     | 3                                               |
| 3. Severity of double vision                                                                                                                                                                                         |                                                                 |                                             |                                                       |                                                 |
| Have you experienced double vision? If yes, how severe has it been (at your worst)?                                                                                                                                  | No Double<br>Vision                                             | Mild: it doesn't affect my daily activities | It affects my activities but no need to cover one eye | I need to cover one eye to be able to function  |

#### Many Patients Have High Disease Burden

### 32% MG patients self-reported to have unacceptable MG symptoms



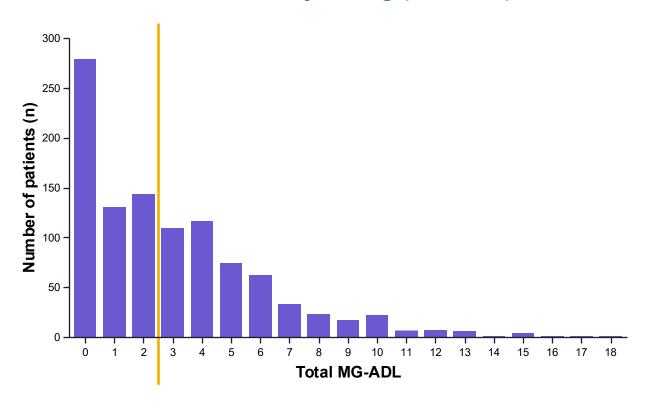
#### Survey of patients from a tertiary academic referral centre in Canada

|                        | No PASS<br>(n = 37) | PASS<br>(n= 80) |
|------------------------|---------------------|-----------------|
| Age                    | 59.6 ± 14           | 61.5 ± 14       |
| Female                 | 25 (68%)            | 42 (54%)        |
| Duration >3 years      | 23 (62%)            | 57 (71%)        |
| MGII-<br>Questionnaire | 24.0± 13.7          | 7.8 ± 9.4       |
| MGII-Ocular            | 8.1±5.5             | 2.4±3.7         |
| MGII-<br>Generalized   | 8.1±4.7             | 2.9±3.7         |

#### Many Patients Have Unacceptable Disease Burden

|                   | Unacceptable<br>Symptoms<br>(n = 164) | Acceptable<br>Symptoms<br>(n= 93) |
|-------------------|---------------------------------------|-----------------------------------|
| Age               | 58.3 ± 16                             | 58.9 ± 15                         |
| Female            | 99 (60%)                              | 38 (41%)                          |
| Duration (months) | 105±117                               | 119±121                           |
| PDN Dose          | 18±14                                 | 10±8                              |
| QMGS              | 10.9±5.7                              | 4.7±3.3                           |
| MGC               | 9.9±6.9                               | 2.4±2.5                           |
| MG-ADL            | 6.6± 3.7                              | 1.3±1.6                           |
| MG-QoL 15         | 25.3±14                               | 7.6±8.7                           |
| Fatigue           | 52.9±9.5                              | 41.3±9.4                          |

Cohort of 257 MG patients


Tertiary Academic Centre in Canada

64% had unacceptable symptom burden

Mean disease duration was 8.8 years

#### Many Patients Have Unacceptable Disease Burden

#### Measures of Disease Activity by Myasthenia Gravis Activities of Daily Living (MG-ADL)



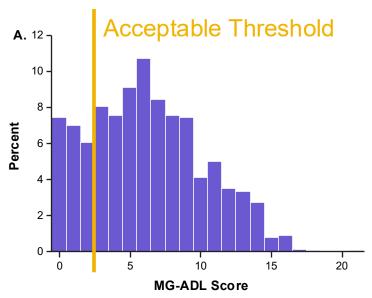
Acceptable Threshold

#### Patient-Reported Symptom Severity in a Nationwide Myasthenia Gravis Cohort

Cross-sectional Analysis of the Swedish GEMG Study

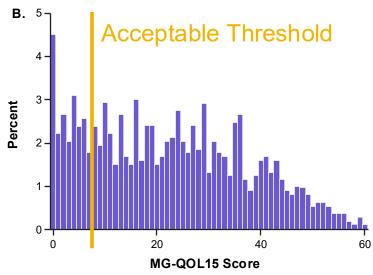
Malin Petersson, MD, Amalia Feresiadou, MD, Daniel Jons, MD, Andreea Ilinca, MD, PhD, Fredrik Lundin, MD, PhD, Rune Johansson, MD, Anna Budzianowska, MD, Anna-Karin Roos, MD, Viktor Kågström, MD, Martin Gunnarsson, MD, PhD, Peter Sundström, MD, PhD, Fredrik Piehl, MD, PhD, and Susanna Brauner. MD, PhD

Correspondence Dr. Brauner susanna.brauner@ki.se


Neurology® 2021;97:e1382-e1391. doi:10.1212/WNL.000000000012604

47% of patients were above MG-ADL cut point for patientacceptable symptoms

Unacceptable Disease


Burden

#### Many Patients Have Unacceptable Disease Burden





Cross-sectional analysis of the Myasthenia Gravis Patient Registry: Disability and treatment



In this cohort, mean disease duration was 9 years

#### **Limitations of Traditional Immunosuppressant Therapies**

- Nonselective: Widespread suppression of immune system
- Delayed response: Can take months and up to a year
- Adverse events
- Monitoring of therapy
- Availability (e.g. PLEX, IVIG)











#### Patients' Experiences

Neurol Ther (2021) 10:1103–1125 https://doi.org/10.1007/s40120-021-00285-w

#### ORIGINAL RESEARCH

### The Lived Experience of Myasthenia Gravis: A Patient-Led Analysis

Nancy Law  $\cdot$  Kelly Davio  $\cdot$  Melissa Blunck  $\cdot$  Dawn Lobban  $\cdot$ 

Kenza Seddik

Fluctuating & unpredictable symptoms

Treatment inertia, often resulting in under-treatment

Sense of disconnect with healthcare professionals

#### What did we learn from this analysis?

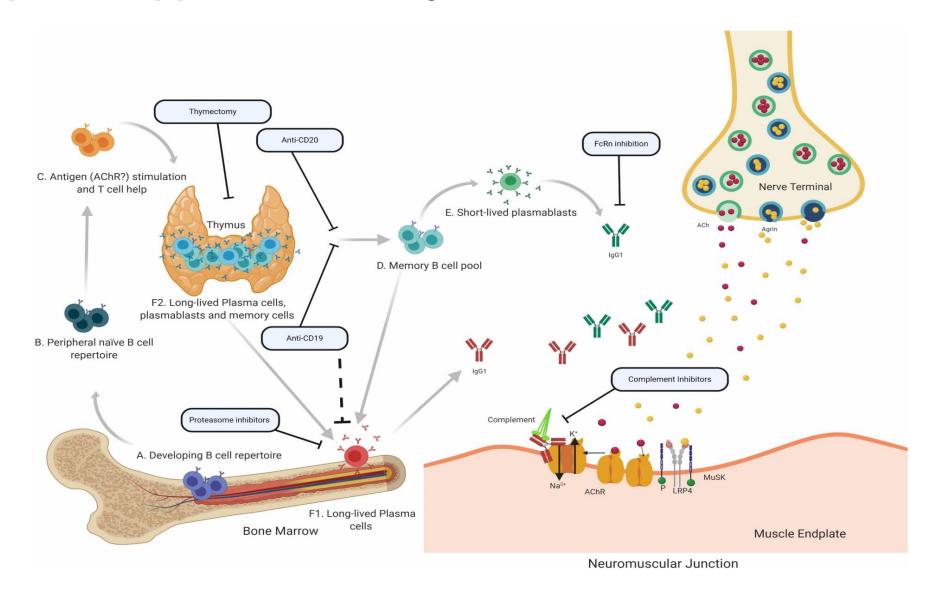
This international patient-led analysis of over 114 patient insights showed that living with myasthenia gravis significantly impacts many aspects of life.

Five themes that describe the experience of living with myasthenia gravis were articulated by the patient authors, including:

- living with fluctuating and unpredictable symptoms
- a constant state of adaptation, continual assessment and trade-offs in all aspects of life
- treatment inertia, often resulting in undertreatment
- a sense of disconnect with health care professionals
- feelings of anxiety, frustration, guilt, anger, loneliness and depression.

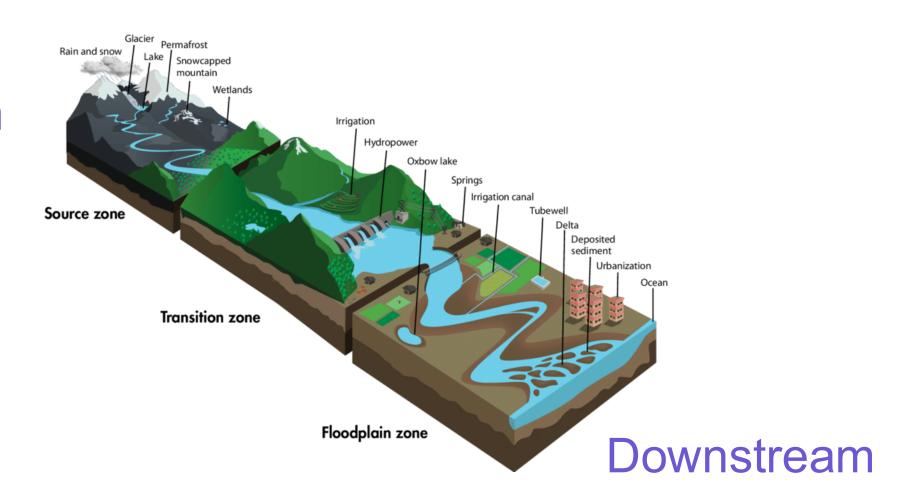
#### **Summary**

- Myasthenia Gravis is a treatable disease.
- Early diagnosis and treatment are associated with better outcomes
- Determining antibody subtype has implications for treatment.
- Most patients respond to standard of care treatments; however, a large number of patients still have disabling symptoms.
- Limitations are side effects and time to onset.
- There is a proportion of patients who are refractory to traditional therapies




Emerging Biological Therapies and Clinical Frontiers

# Novel Therapies for Myasthenia Gravis


Carolina Barnett-Tapia MD, PhD

#### Therapeutic Approaches in Myasthenia Gravis

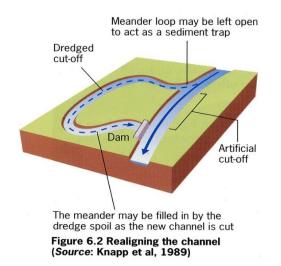


#### Therapeutic Approaches in Myasthenia Gravis

Upstream



#### **Upstream and Downstream**





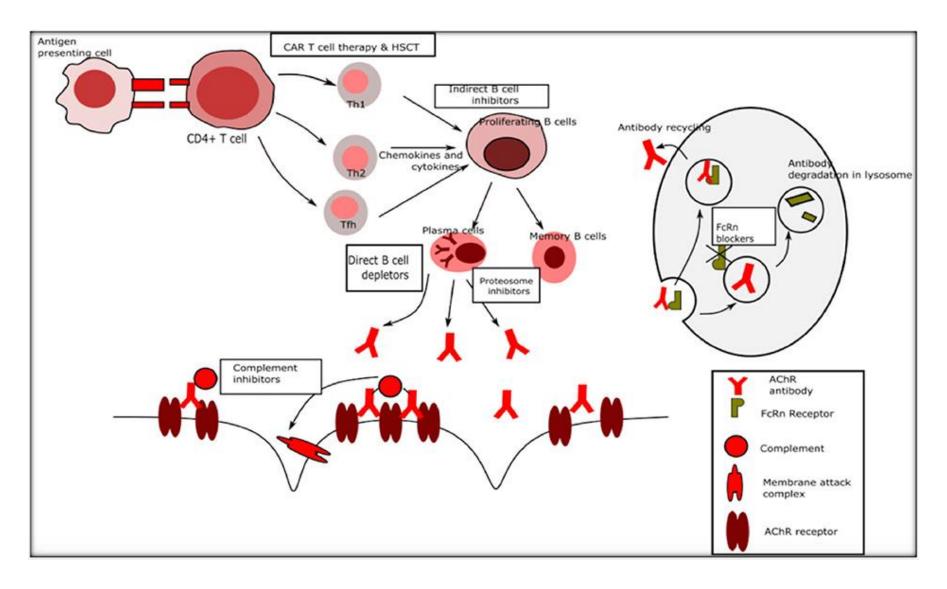

B-cell depletion Cell therapy



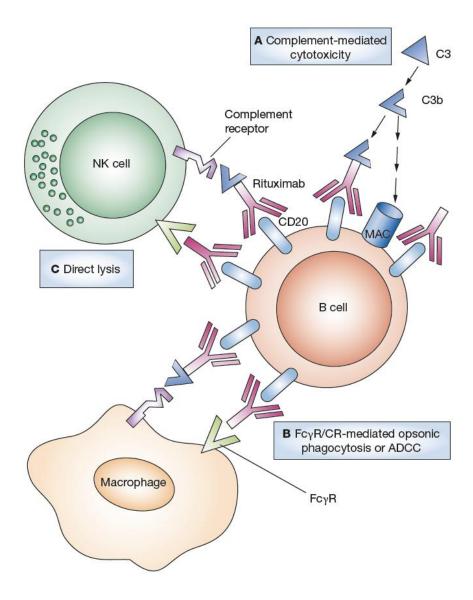
## Remove Antibodies from Circulation



- Plasma Exchange
- IVIG
- FcRn inhibitors




#### **Prevent Antibodymediated Damage**




Complement inhibitors

#### **Novel Treatments for MG**



#### **B Cell Depletion – Rituximab**



- Monoclonal antibody, CD20
- B-cell destruction
- Reduction antibody production





# Poll #3: Have you used rituximab for the treatment of MG in your practice?



## Rituximab – MuSK

Rituximab as treatment for anti-MuSK myasthenia gravis

Multicenter blinded prospective review

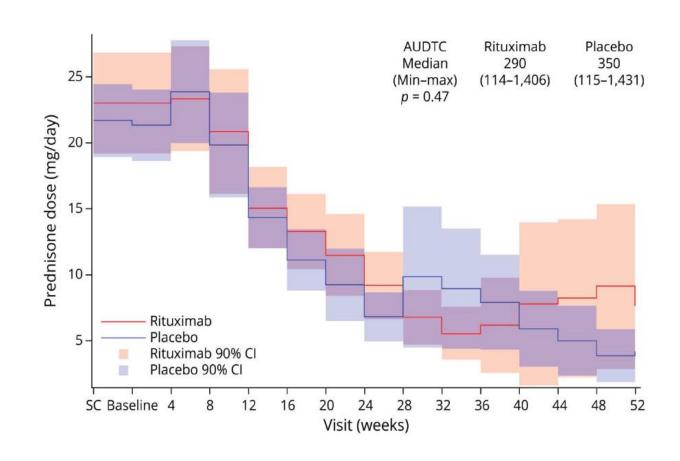


- 56% RTX-treated patients had excellent outcome compared to 16% controls
- 29% RTX needed PDN vs 79% controls at follow-up
- NNT=2

## Rituximab – AChRAb

ian Zhang, Y. Li et al.

Journal of Clinical Neuroscience 85 (2)


| Group by Study name |                      | Statistics for each study |                |                |         |         |       | Event rate and 95% CI |       |               |               |
|---------------------|----------------------|---------------------------|----------------|----------------|---------|---------|-------|-----------------------|-------|---------------|---------------|
| RTX dose            |                      | Event rate                | Lower<br>limit | Upper<br>limit | Z-Value | p-Value |       |                       |       |               |               |
| low dosage          | Jing, S.             | 0.786                     | 0.506          | 0.929          | 1.995   | 0.046   | - 1   |                       | - 1   | $\vdash$      | ■             |
| low dosage          | Choi, K.             | 0.889                     | 0.500          | 0.985          | 1.961   | 0.050   |       |                       |       | - ⊢-          |               |
| low dosage          | Chan, F.             | 0.821                     | 0.636          | 0.924          | 3.093   | 0.002   |       |                       |       | l –           | █             |
| low dosage          | Sun, F.              | 0.667                     | 0.406          | 0.854          | 1.266   | 0.206   |       |                       |       |               | -             |
| low dosage          | Blum, S.             | 0.727                     | 0.414          | 0.910          | 1.449   | 0.147   |       |                       |       | +-            |               |
| low dosage          |                      | 0.771                     | 0.661          | 0.853          | 4.357   | 0.000   |       |                       |       | -   ∢         | ▶             |
| routine dosage      | Tess Litchman.       | 0.647                     | 0.404          | 0.832          | 1.194   | 0.232   |       |                       |       |               | <u> </u>      |
| routine dosage      | Topakian, <b>R</b> . | 0.949                     | 0.817          | 0.987          | 4.019   | 0.000   |       |                       |       |               |               |
| routine dosage      | Singh, N.            | 0.929                     | 0.423          | 0.996          | 1.748   | 0.081   |       |                       |       | +             |               |
| routine dosage      | Roda, R. H.          | 0.900                     | 0.533          | 0.986          | 2.084   | 0.037   |       |                       |       | I—            |               |
| routine dosage I    | Landon-Cardinal, O.  | 0.833                     | 0.523          | 0.958          | 2.078   | 0.038   |       |                       |       | I—            |               |
| routine dosage      | Robeson, K. R.       | 0.971                     | 0.664          | 0.998          | 2.436   | 0.015   |       |                       |       | l –           | —┫            |
| routine dosage      | Afanasiev, V.        | 0.571                     | 0.360          | 0.760          | 0.652   | 0.514   |       |                       |       | -             | .             |
| routine dosage      | Diaz-Manera, J.      | 0.909                     | 0.561          | 0.987          | 2.195   | 0.028   |       |                       |       | I—            | <del></del> - |
| routine dosage      | Nowak, R. J.         | 0.929                     | 0.423          | 0.996          | 1.748   | 0.081   |       |                       |       | +             |               |
| routine dosage      | Maddison, P.         | 0.571                     | 0.230          | 0.856          | 0.377   | 0.706   |       |                       | - 1 - |               | <b>–</b> I    |
| routine dosage      | lla, I.              | 0.875                     | 0.266          | 0.993          | 1.287   | 0.198   |       |                       |       | $\overline{}$ | <b></b> -     |
| routine dosage      |                      | 0.768                     | 0.676          | 0.840          | 5.083   | 0.000   |       |                       |       | _   ∢         | <b>▶</b>      |
| Overall             |                      | 0.770                     | 0.701          | 0.826          | 6.695   | 0.000   |       |                       |       | -   ∢         | •             |
|                     |                      |                           |                |                |         |         | -1.00 | -0.50                 | 0.00  | 0.50          | 1.00          |

## Meta Analysis

## Rituximab – AChRAb



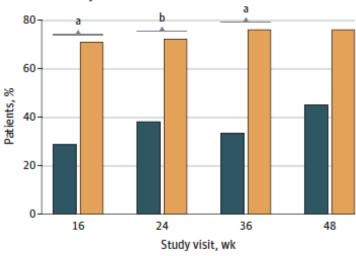
B Cell Targeted Treatment In Myasthenia Gravis: A Phase II Trial of Rituximab In Myasthenia Gravis



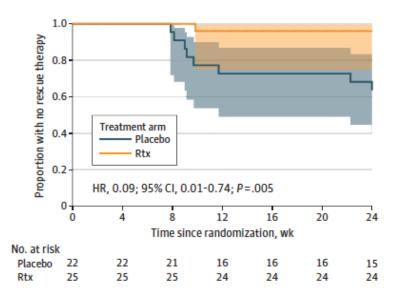
- 52 patients: 25 RTX, 27 placebo
- No difference in prednisone dose or symptoms.

## Rituximab – AChRAb

JAMA Neurology | Original Investigation


## Efficacy and Safety of Rituximab for New-Onset Generalized Myasthenia Gravis

The RINOMAX Randomized Clinical Trial


Fredrik Piehl, MD, PhD; Ann Eriksson-Dufva, MD; Anna Budzianowska, MD, PhD; Amalia Feresiadou, MD; William Hansson, MD; Max Albert Hietala, MD, PhD; Irene Håkansson, MD, PhD; Rune Johansson, MD; Daniel Jons, MD; Ivan Kmezic, MD; Christopher Lindberg, MD, PhD; Jonas Lindh, MD, PhD; Fredrik Lundin, MD, PhD; Ingela Nygren, MD, PhD; Anna Rostedt Punga, MD, PhD; Rayomand Press, MD, PhD; Kristin Samuelsson, MD, PhD; Peter Sundström, MD, PhD; Oskar Wickberg, MD; Susanna Brauner, MD, PhD; Thomas Frisell, PhD

### **JAMA Neurology** RCT: Efficacy and Safety of Rituximab for New-Onset Generalized Myasthenia Gravis **POPULATION** INTERVENTION 33 Men, 14 Women 47 Patients randomized A significantly greater proportion treated with rituximab met the primary end point compared with placebo Adults with recent (<12 mo) onset of 25 Single dose of 22 Placebo generalized myasthenia gravis symptoms rituximab, 500 mg Intravenous infusion Intravenous infusion Mean (range), 63 (21-89) y SETTINGS/LOCATIONS PRIMARY OUTCOME Rituximab group, 71% (17 of 24) Minimal disease manifestations at 16 wk, defined as a Quantitative Myasthenia Gravis (QMG) score ≤4, use of prednisolone ≤10 mg daily. Placebo group, 29% (6 of 21) Probability ratio, 2.48; 95% CI, 1.20-5.11; P=.007 Piehl F. Eriksson-Dufva A. Budzianowska A, et al. Efficacy and safety of rituximab for new-onset generalized myasthenia gravis: the RINOMAX randomized clinical trial JAMA Neurol. Published online September 19, 2022. doi:10.1001/jamaneurol.2022.2887

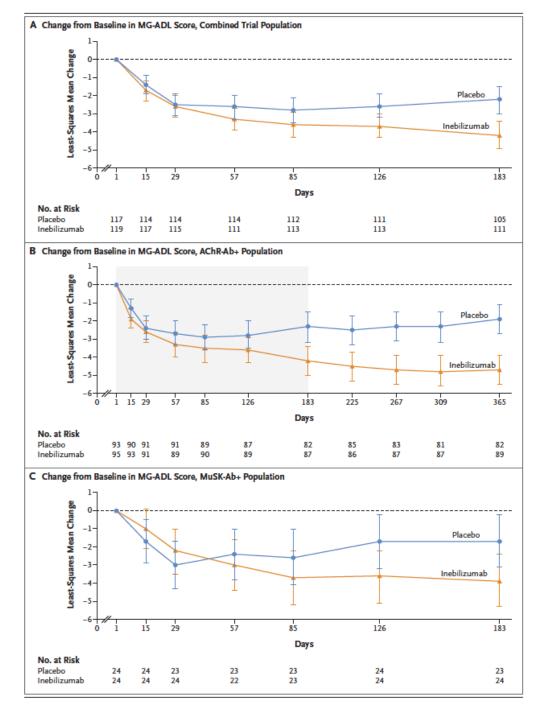
## Proportion of patients with minimal disease manifestations at each study visit



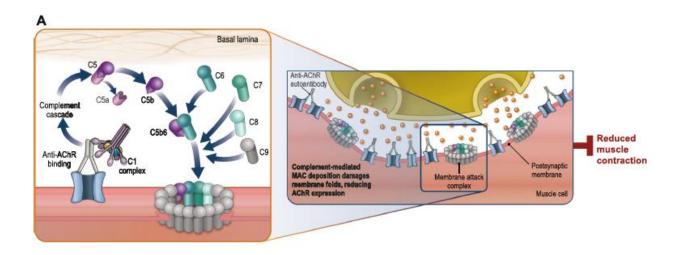
### B Kaplan-Meier estimate of the proportion with no rescue therapy



## Inebilizumab – AChRAb and MuSK MG


The NEW ENGLAND JOURNAL of MEDICINE

### ORIGINAL ARTICLE


## A Phase 3 Trial of Inebilizumab in Generalized Myasthenia Gravis

R.J. Nowak,<sup>1</sup> M. Benatar,<sup>2</sup> E. Ciafaloni,<sup>3</sup> J.F. Howard, Jr.,<sup>4</sup> M.I. Leite,<sup>5</sup> K. Utsugisawa,<sup>6</sup> J. Vissing,<sup>7</sup> M. Rojavin,<sup>8</sup> Q. Li,<sup>8</sup> F. Tang,<sup>8</sup> Y. Wu,<sup>8</sup> N. Rampal,<sup>8</sup> and S. Cheng,<sup>8</sup> for the MINT Investigators\*

Monoclonal antibody, against CD19+ B cells



## **Complement Inhibition**



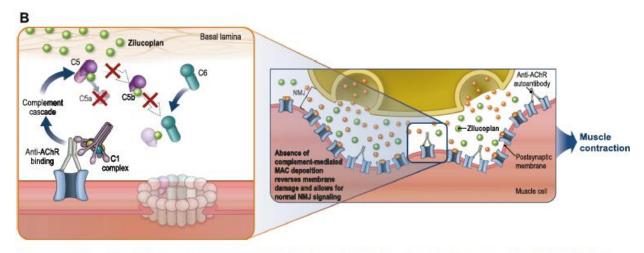
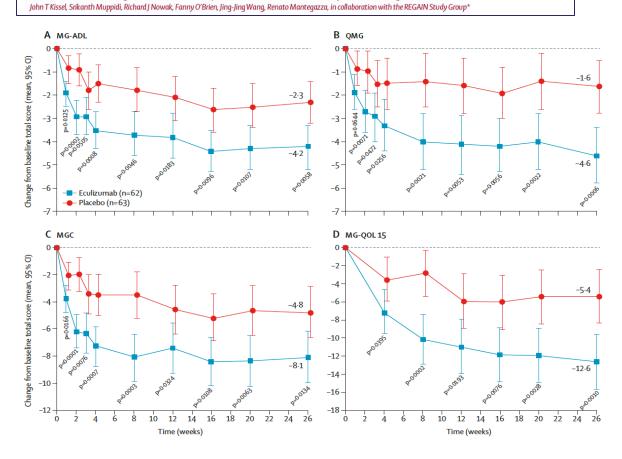


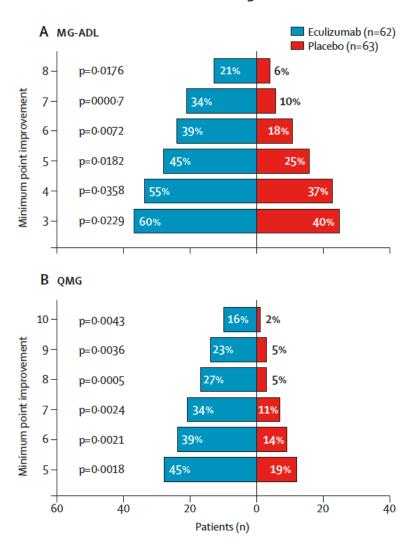

Figure 2. (A) Activation of the terminal complement cascade in gMG and (B) inhibition by zilucoplan. Graphics are schematic representations and are not true to scale. In panel A, cross-linking of AChRs by anti-AChR antibodies initiates the classical complement cascade, leading to cleavage of C5 and assembly of the MAC. In panel B, zilucoplan binds C5 at the location corresponding to C5b, thereby inhibiting both the cleavage of C5 and the binding of C6 to pre-formed C5b, thus preventing assembly of the MAC. ACh, acetylcholine; AChR, acetylcholine receptor; C[x], complement component [x]; gMG, generalized myasthenia gravis; MAC, membrane attack complex; NNJ, neuromuscular junction.

Complement inhibitors prevent downstream MAC assembly and secondary muscle destruction induced by complement.


## **Complement Inhibition**

| Name                                  | Route                                               | Population                                              | Status                                                      | Cost   |
|---------------------------------------|-----------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|--------|
| Eculizumab<br>C5<br>NCT01997229       | I.V.<br>Weekly x 4,<br>Then Q2 weeks                | ACHRAb +, generalized<br>Refractory disease             | FDA, Health Canada<br>approval<br>Meningococcal vaccination | \$\$\$ |
| Ravalizumab<br>C5<br>NCT03020293      | I.V.<br>Every 2 weeks x<br>2, then every<br>8 weeks | ACHRAb +, generalized<br>MGFA II-IV, MG-ADL ≥6          | FDA, Health Canada<br>approval<br>Meningococcal vaccination | \$?    |
| Zilucoplan<br>C5 y C5b<br>NCT04115293 | S.C<br>0.3 mg/Kg day                                | ACHRAb +, generalized<br>MGFA II-IV, MG-ADL ≥6, QMGS≥12 | FDA, Health Canada<br>approval<br>Meningococcal vaccination | \$?    |

## **Eculizumab**


Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, doubleblind, placebo-controlled, multicentre study

James F Howard Jr, Kimiaki Utsugisawa, Michael Benatar, Hiroyuki Murai, Richard J Barohn, Isabel Illa, Saiju Jacob, John Vissing, Ted M Burns,



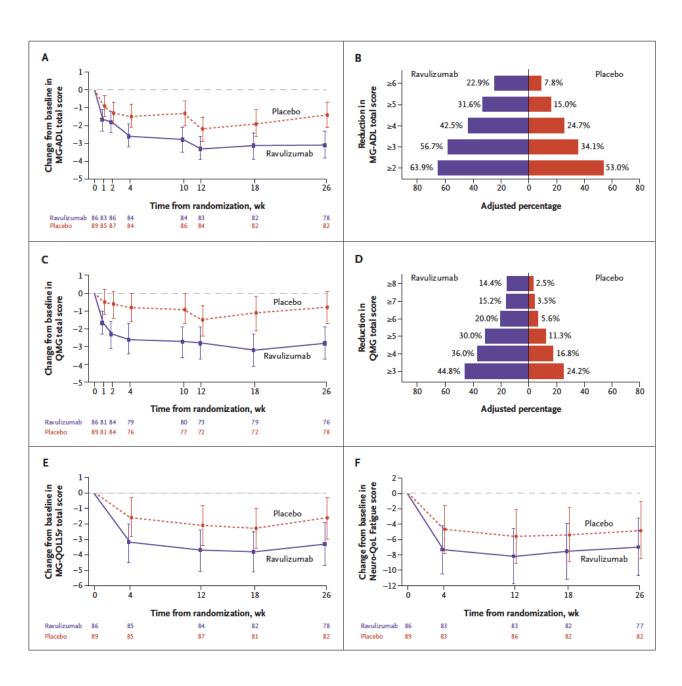
W the Comment

## **Refractory MG**



## Ravulizumab



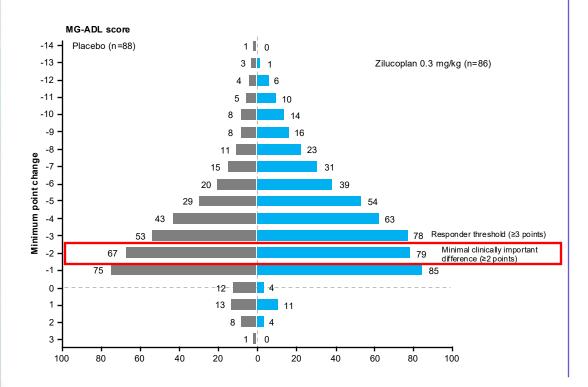

Published April 26, 2022 NEJM Evid 2022; 1 (5) DOI: 10.1056/EVIDoa2100066

ORIGINAL ARTICLE

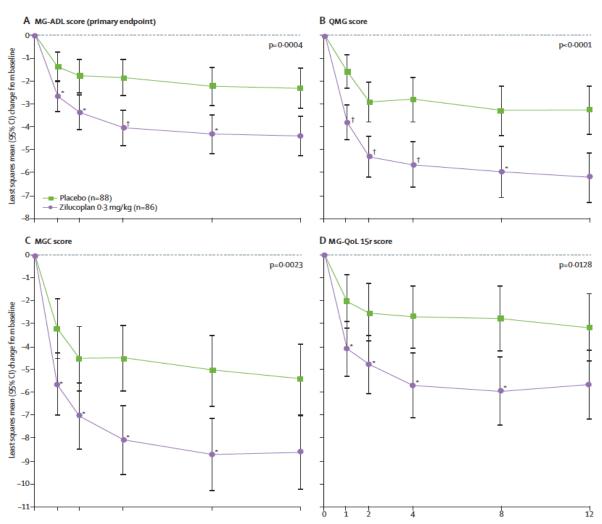
## Terminal Complement Inhibitor Ravulizumab in Generalized Myasthenia Gravis

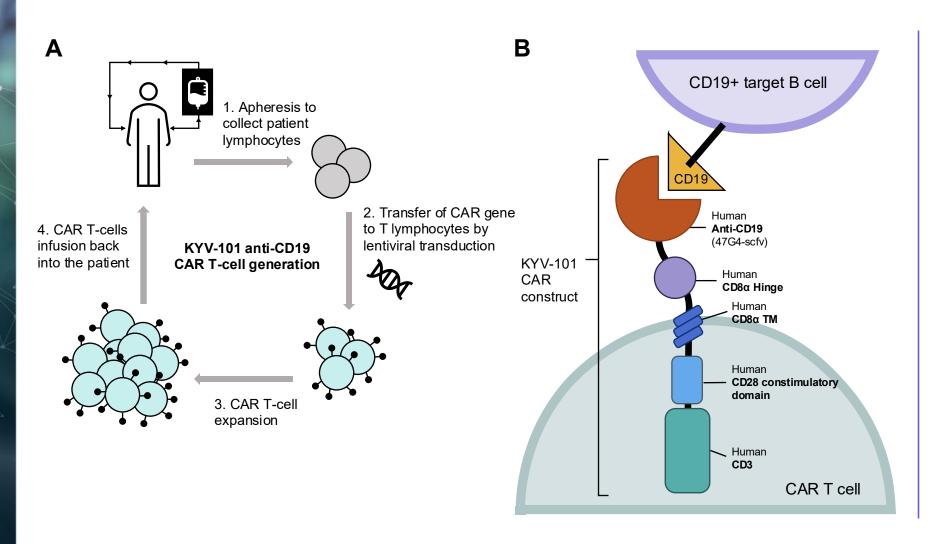
Tuan Vu, M.D., Andreas Meisel, M.D., Renato Mantegazza, M.D., Dillali Annane, M.D., Masahisa Katsuno, M.D., Rasha Aguzzi, M.S., Ahmed Enayetallah, M.D., Ph.D., Kathleen N. Beasley, Pharm.D., Nishi Rampal, M.D., James F. Howard, Jr., M.D., for the CHAMPION MG Study Group\*

## gMG Classes II-IV



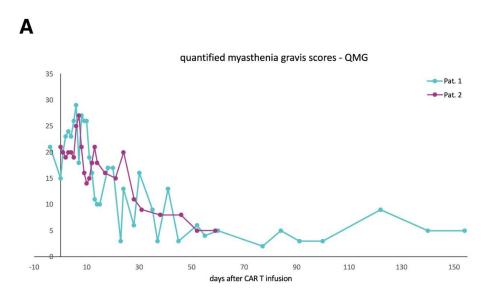

## Zilucoplan

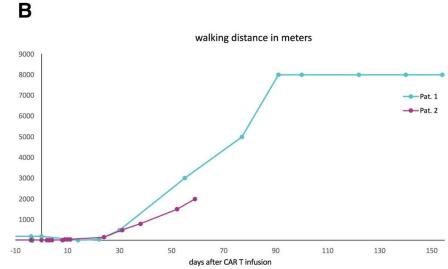

Safety and efficacy of zilucoplan in patients with generalised 💃 📵 myasthenia gravis (RAISE): a randomised, double-blind, placebo-controlled, phase 3 study



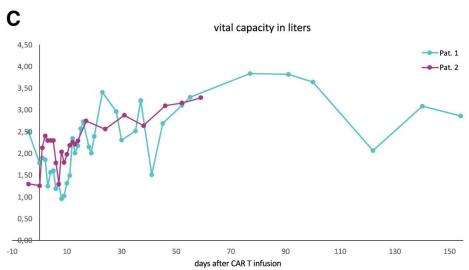

James F Howard Jr, Saskia Bresch, Angela Genge, Channa Hewamadduma, John Hinton, Yessar Hussain, Raul Juntas-Morales, Henry J Kaminski, Angelina Maniaol, Renato Mantegazza, Masayuki Masuda, Kumaraswamy Sivakumar, Marek Śmiłowski, Kimiaki Utsugisawa, Tuan Vu, Michael D Weiss, Malgorzata Zajda, Babak Boroojerdi, Melissa Brock, Guillemette de la Borderie, Petra W Duda, Romana Lowcock, Mark Vanderkelen, M Isabel Leite and the RAISE Study Team\*

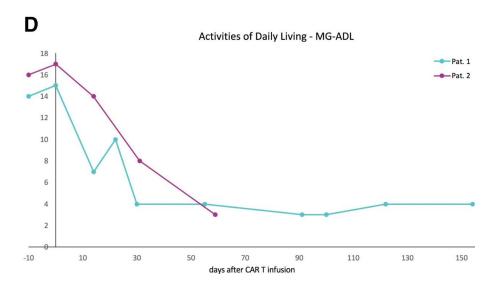



## gMG Classes II-IV







Chimeric Antigen Receptor (CAR) T cells

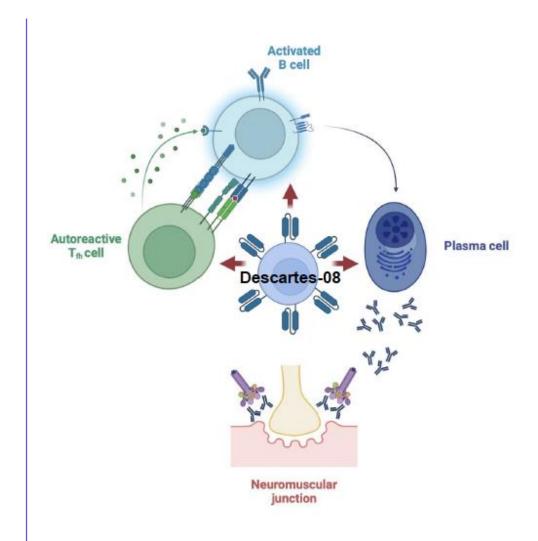

Modified to target specific cells







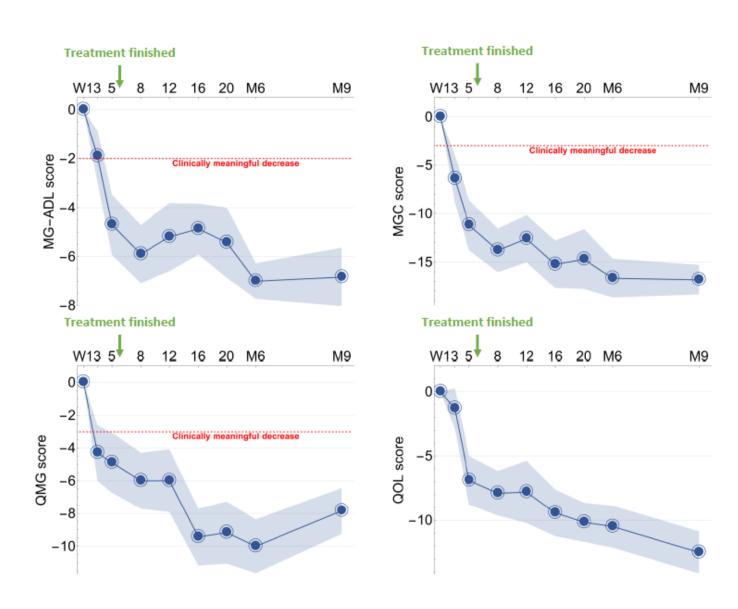





## RNA-engineered chimeric antigen receptor T-cells (rCAR-T) areinherently safer than conventional (DNA-engineered) CAR-T

- rCAR-T leverages mRNA to achieve tunable duration, predictablePK, and controlled exposure
- No lymphodepletion (chemotherapy) needed
- All treatment is outpatient; can be done in community clinics

### **Descartes-08**


- CD8+ T cells
  - Enhanced killing and reduced inflammatory cytokine secretion versus pan T-cell approaches
- CAR binds BCMA
  - A highly specific plasma cell antigen
- Mechanism of action may be multi-modal
  - Direct: eliminate autoantibody-producing plasma cell clones
  - Indirect: inhibit autoreactive T-cell and B-cell clones



## THE LANCET Neurology

Volume 22, Issue 7, July 2023, Pages 578-590

## **Phase 3 study underway**



## Other MG treatments in the pipeline

| Class                        | Agent                                               | Population overview                                                                               | Primary endpoint               |
|------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------|
| IL-6 inhibitor               | Tocilizumab<br>NCT05067348                          | <ul> <li>MGFA II–IV gMG</li> <li>MG-ADL ≥5, QMGS≥11</li> <li>AChR-Ab+</li> </ul>                  | Change in QMGS from baseline   |
| Inhibition of BAFF and APRIL | Telitacicept<br>NCT05737160                         | <ul> <li>MGFA II-III</li> <li>AChRAB and MuSK +</li> <li>QMGS ≥ 8</li> </ul>                      | Change in QMGS from baseline   |
| B-cell and plasma cell       | Remibrutinib (oral)<br>BTK inhibitor<br>NCT06744920 | <ul><li>MGFA II-IV</li><li>AChRAB and MuSK +</li><li>MG-ADL ≥6</li></ul>                          | Change in MG-ADL from baseline |
| targeting therapies          | Blinatunomab (CD-19)<br>NCT06836973                 | <ul><li>MGFA I-IV, refractory</li><li>AChRAb, MuSK and LRP4 +</li></ul>                           | Change in MG-ADL from baseline |
| B-cell and T-cell targeting  | Cladribine (oral)<br>NCT06463587                    | <ul> <li>MGFA II-IV</li> <li>AChRAb, MuSK and LRP4 +</li> <li>MG-ADL ≥6</li> </ul>                | Change in MG-ADL from baseline |
|                              | Gefurulimab<br>NCT05556096                          | <ul> <li>MGFA II–IV AChR-Ab+ gMG</li> <li>MG-ADL ≥6</li> <li>Meningococcal vaccination</li> </ul> | Change in MG-ADL from baseline |
| Comp. inhibitors             | Pozelimab + Cemdisiran<br>NCT05070858               | <ul> <li>MGFA II–IV AChR-Ab+ gMG</li> <li>MG-ADL ≥6</li> <li>Meningococcal vaccination</li> </ul> | Change in MG-ADL from baseline |
|                              | Iptacopan (oral)<br>NCT06517758                     | <ul> <li>MGFA II–IV AChR-Ab+ gMG</li> <li>MG-ADL ≥6</li> <li>Meningococcal vaccination</li> </ul> | Change in MG-ADL from baseline |

## **Summary**

There are many potential targets for the treatment of gMG

Antibody profile influences treatment selection

Novel treatments for gMG are becoming more common – while this may improve outcomes, treatment decisions may become more complex



Emerging Biological Therapies and Clinical Frontiers

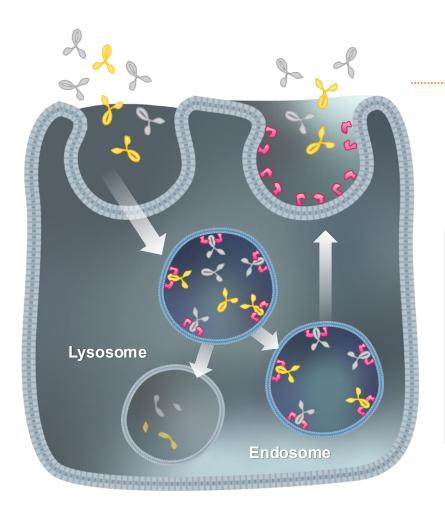
# Fc Inhibition Therapy in Myasthenia Gravis

Hans Katzberg MD, MSc

## Outline

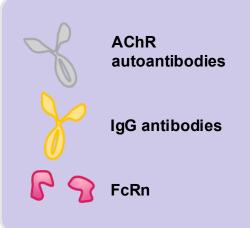
Review the pathophysiology of Fc receptor inhibition for treatment of myasthenia gravis (MG)

Understand the different Fc receptor inhibitor molecules in use and under investigation for treatment of MG





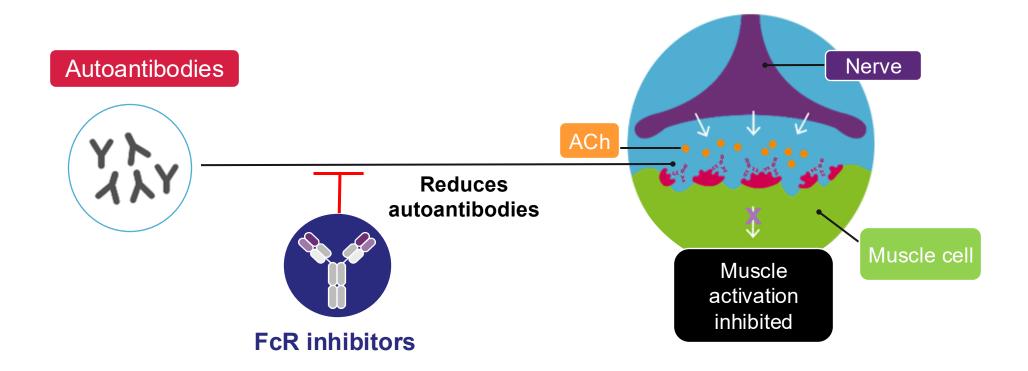

## Poll #4: How do Fc receptor inhibitors work to improve disease states in myasthenia gravis?




## FcRn Plays a Key Role in gMG by Perpetuating IgG Antibodies



Blood vessel


Endothelial cell



- FcRn binds IgG antibodies, preventing them from being destroyed in the lysosome
- In doing so, FcRn helps maintain high levels of circulating IgG antibodies, including AChR autoantibodies
- FcRn perpetuates the ability of AChR autoantibodies to attack structures such as AChR and damages the NMJ

## **FcR Inhibitors**

Remove all IgG sub-classes (IgG1, IgG2, IgG3, and IgG4) and would therefore be expected to remove all known MG autoantibodies including AChR (IgG1) and MuSK (IgG4)







Poll #5: Which of the following statements about Fc receptor inhibitor molecules is correct?



## Targeted Fc Receptor Inhibitor gMG therapies

|             | Efgartigomod                                                       | Rozanolixizumab                                 | Nipocalimab                                                      | Batoclimab                        |  |
|-------------|--------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------|-----------------------------------|--|
| Target      | FcRn Blocker (fragment-based Ab)                                   | FcRn blocker<br>(full-length MAb)               | FcRn blocker<br>(full-length MAb)                                | FcRn blocker<br>(full-length MAb) |  |
| Status      | Approved (FDA/EMA/Health Canada)                                   | Approved (FDA/EMA/Health Canada)                | Approved by FDA;<br>decisions pending from<br>EMA, Health Canada | Ongoing phase 2 trials            |  |
| gMG subtype | AChRAb+ gMG                                                        | AChRAb+ or MuSK+ gMG                            | AChRAb+                                                          | Unspecified gMG                   |  |
| ROA         | IV infusion weekly for 4 weeks = 1 cycle, SC infusion being tested | Weight-based dosing weekly SC via infusion pump | IV load followed by IV infusion every 2 weeks                    | Weekly SC doses                   |  |

## Efgartigimod ADAPT Study Design in gMG

**DESIGN** 

167 gMG patients


MGFA Class II, III, IV

AChR-antibody positive or negative

MG-ADL score ≥5 (>50% non-ocular)

On a minimum of one stable gMG treatment\*

Patients randomized 1:1 to receive 10 mg/kg IV efgartigimod or placebo



Open Label Extension

26 weeks

Primary endpoint: MG-ADL responders (≥2-point improvement for ≥4 consecutive weeks) in AChR-Ab+ patients in cycle 1 (8 weeks)

DOSING

Treatment Cycles of 4 weekly IV infusions (1 hour infusion)

All patients receive initial treatment cycle

## Individualized treatment cycles

(up to 3 cycles in 26 weeks)

Time between cycles determined by duration of clinically meaningful improvement (CMI)

### Retreatment criteria:

- ≥8 weeks since initiation of previous cycle
- Total MG-ADL ≥5 points (>50% non-ocular)
- For MG-ADL responders, no CMI in MG-ADL (i.e., <2-point reduction compared to start of cycle)

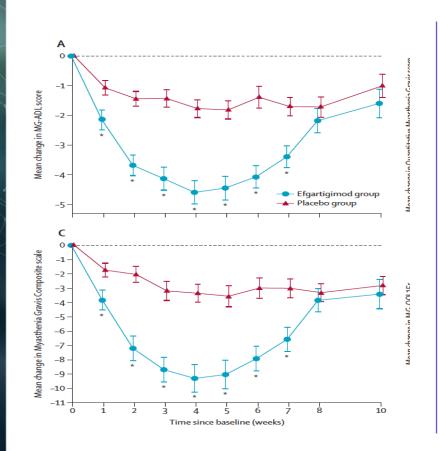
<sup>\*(</sup>Acetylcholinesterase inhibitor, Steroid +/or Non-steroidal immunosuppressive therapy) gMG, generalized myasthenia gravis; IV, intravenous Note: Patients requiring rescue therapy discontinued from the study treatment

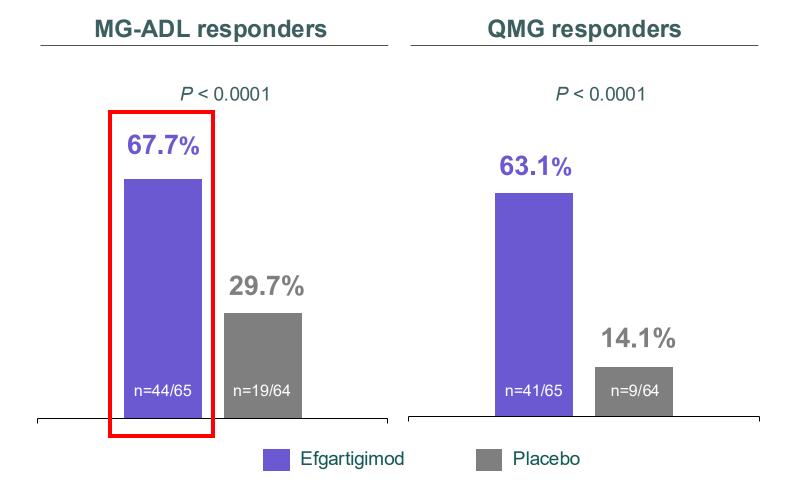


Safety, efficacy, and tolerability of efgartigimod in patients with generalised myasthenia gravis (ADAPT): a multicentre, randomised, placebo-controlled, phase 3 trial

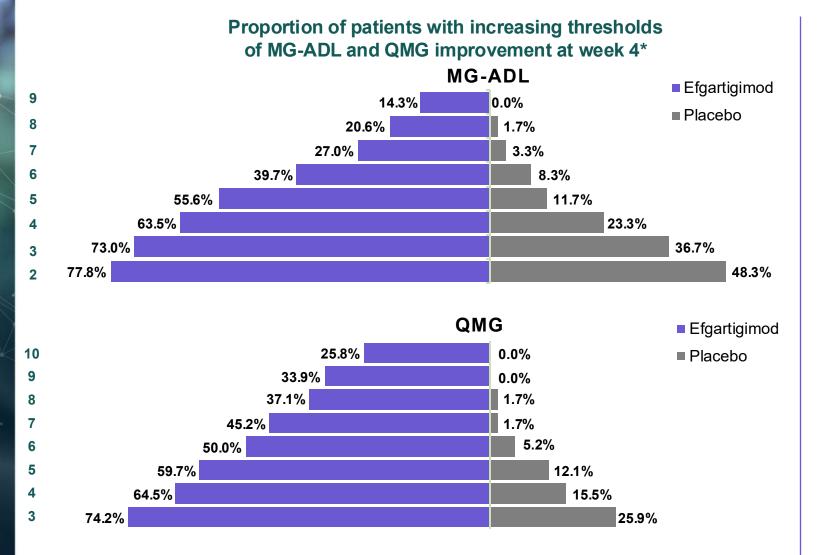
James F Howard Jr, Vera Bril, Tuan Vu, Chafic Karam, Stojan Peric, Temur Margania, Hiroyuki Murai, Malgorzata Bilinska, Roman Shakarishvili, Marek Smilowski, Antonio Guglietta, Peter Ulrichts, Tony Vangeneugden, Kimiaki Utsugisawa, Jan Verschuuren, Renato Mantegazza, and the ADAPT Investigator Study Group\*

## **Primary**


## **MG-ADL** responder:

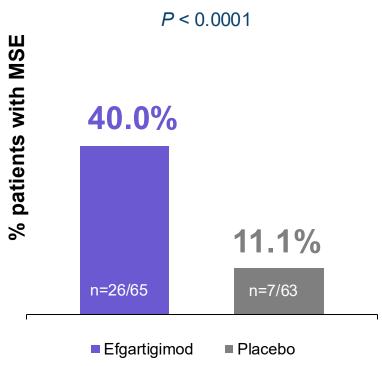

≥2-point improvement for at least four consecutive weeks during the first cycle\*

## Secondary

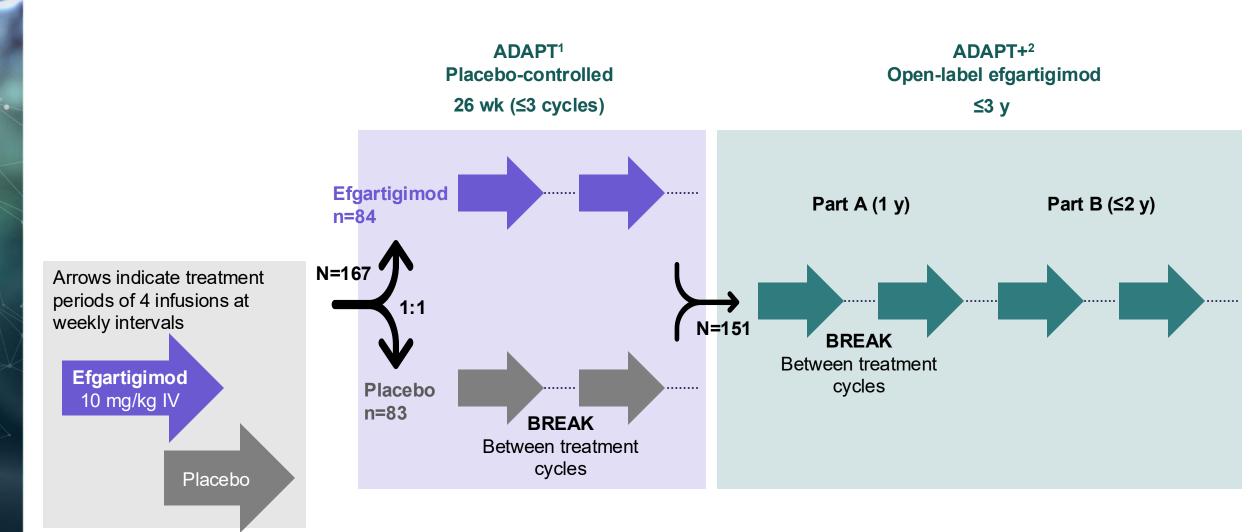

## QMG responder:

≥3-point improvement for at least four consecutive weeks during the first cycle\*

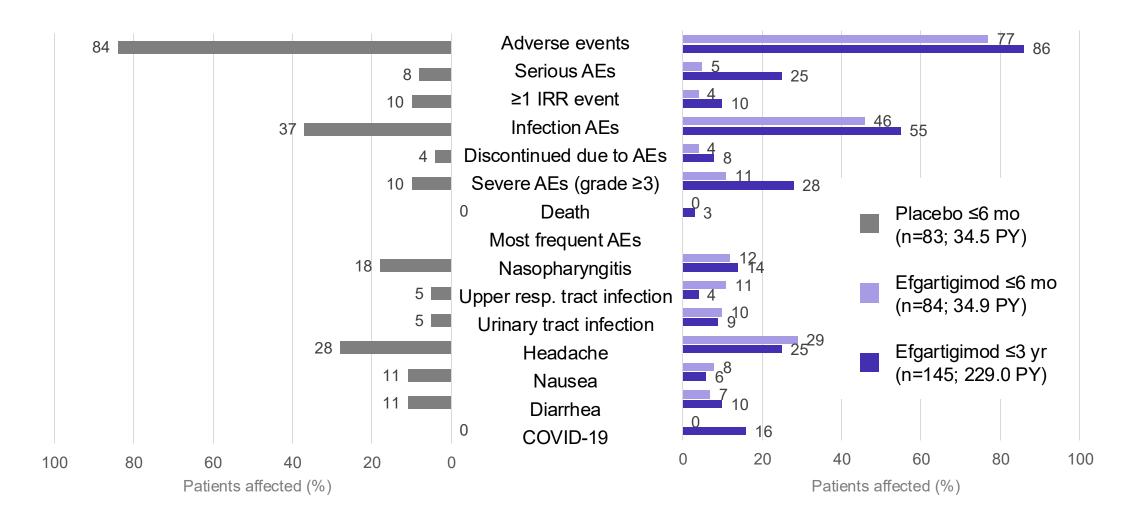





## Proportion of patients with increasing MG-ADL and QMG improvement and achieving Minimal Symptom Expression (AChR-Ab+ patients, Cycle 1)




Proportion of patients with MSE (MG-ADL 0 or 1) any time during cycle 1


**Minimal Symptom Expression** 

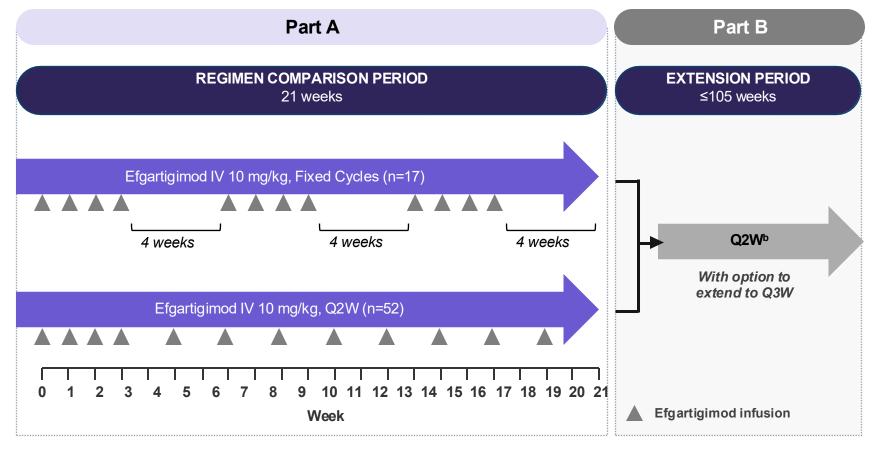


## **ADAPT/ADAPT+: Phase 3 trial for efgartigimod and OLE**



## Efgartigimod Safety Data Safety population, ADAPT (≤6 mo) and ADAPT+ (≥3 yr)



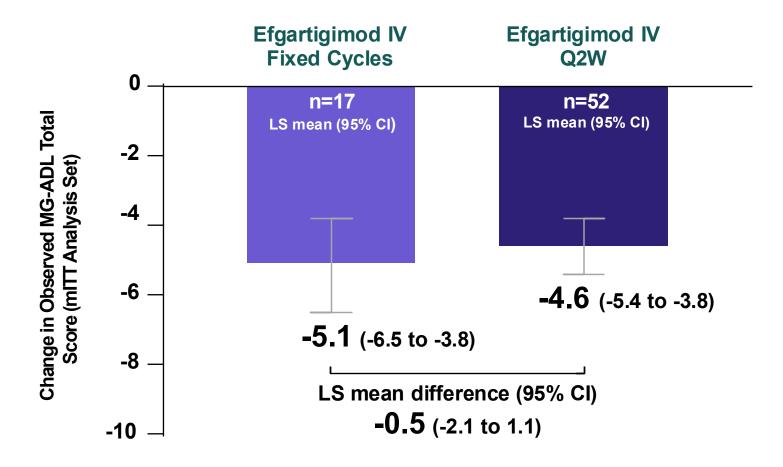

## **ADAPT NXT Study Design**

Ongoing, Phase IIIb, randomized, open-label, parallel-group study designed to evaluate two dosing regimens of efgartigimod IV in participants with AChR-Ab+gMG

# SCREENING 2 weeks N=69 patients

### 3:1 Randomization

- Adults (≥18 years old) with AChR-Ab+ gMG
- MG-ADL score ≥5 (>50% nonocular)
- MGFA class II, III, or IV
- Concomitant gMG treatment permitted (NSISTs, corticosteroids, and/or AChEIs)<sup>a</sup>
- IgG ≥6 g/L

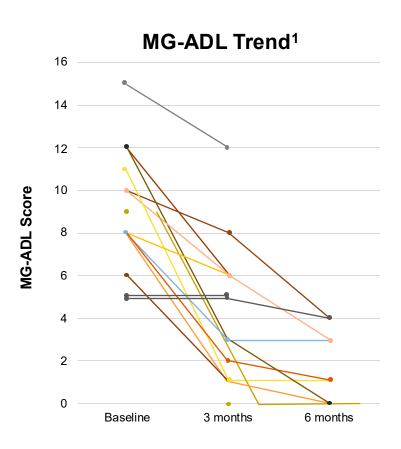



alf receiving corticosteroids and/or NSISTS, must be on a stable dose for ≥1 month before screening. bAll participants entering Part B will be transitioned to Q2W with the option to extend to Q3W dosing; patients in the Fixed Cycle arm will receive another cycle before transitioning to Q2W dosing.2

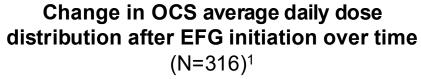
1. Study ARGX-113-2003 (ADAPT NXT) Clinical Trial Protocol v1.0, 06 July 2021. 2. Cortés-Vicente E, et al. Poster presented at: European Academy of Neurology Annual Meeting; June 29-July 2, 2024; Helsinki, Finland.

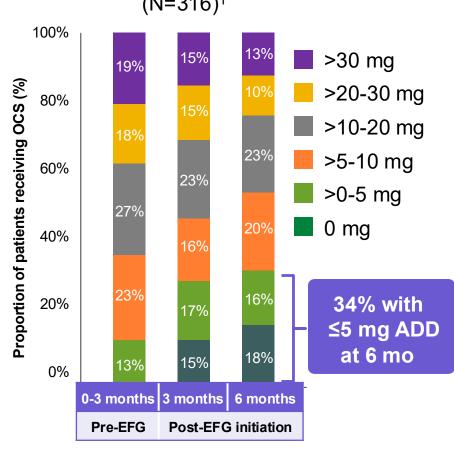
## ADAPT NXT Part A Results: Mean Change in MG-ADL Total Score From Baseline (Week 1-21)

**Primary Endpoint** 




<sup>&</sup>lt;sup>a</sup>The ANCOVA model used for statistical analysis included treatment arm as a factor and baseline MG-ADL total score as a covariate to account for any differences in baseline MG-ADL scores. ANCOVA, analysis of covariance; CI, confidence interval; MG-ADL, Myasthenia Gravis Activities of Daily Living; LS, least squares; Q2W, every 2 weeks; Q3W, every 3 weeks


1. Habib AA, et al. Ann Clin Transl Neurol. Published online April 14, 2025.


<sup>2.</sup> Bril V, et al. Poster presented at: American Academy of Neurology (AAN) Annual Meeting; April 13-18, 2024; Denver, CO.

## Improvement in ADL Scores and Steroid-Sparing Effects



- Efgartigimod group: improved by an average of 5.5 points at 3 months (p<0.001) and 7.1 points by 6 months (p<0.001).
- 40% of patients achieved MSE.





Efgartigimod alfa is approved for adult patients with anti-AChR antibody positive gMG; efficacy and safety in other indications have not been established.

<sup>1.</sup> Singer et al. Muscle & Nerve. 2024;69(1):87-92. 2. Frangiamore R, et al. Eur J Neurol. 2024;31:e16189.

<sup>2.</sup> Goyal et al. Oral Presentation at the American Academy of Neurology (AAN) Annual Meeting; April 13-18, 2024; Denver, CO, USA.

## Ocular Myasthenia Gravis

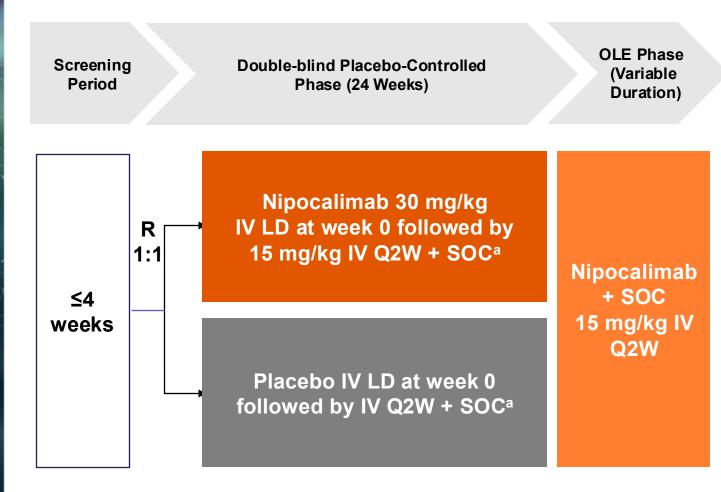


## **Oculus**

A Phase 3, Randomized, Double-Blinded, Placebo-Controlled Parallel-Group Design Study Evaluating the Efficacy and Safety of Efgartigimod PH20 SC Administered by Prefilled Syringe in Adult Participants with Ocular Myasthenia Gravis

**Program:** Efgartigimod

## Seronegative gMG




## **ADAPT SERON**

Phase 3 trial of IV efgartigimod for the treatment of AChR-Generalized Myasthenia Gravis (gMG).

**Program:** Efgartigimod

## Nipocalimab: Phase 3 Vivacity-MG3

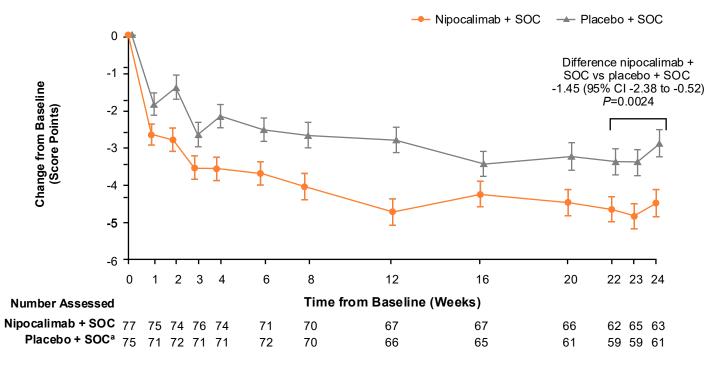


Safety Followup at 8-weeks post last dose<sup>b</sup> Primary endpoint: change from baseline in MG-ADL score over weeks 22, 23, and 24

Primary efficacy cohort: all antibody-positive patients

### **Select Inclusion Criteria**

- Age ≥18 years with gMG MGFA Class IIa/b, III a/b or IV a/b
- Patients (except in France) who were antibody-positive (AChR+, MuSK+, or LRP4+) or triple-antibody-negative<sup>a,b</sup>
- MG-ADL score of ≥6 at screening and baseline
- Suboptimal reponse to current stable therapy for gMG or discontinued corticosteroids and/or immunosuppressants/ immunomodulators ≥4 weeks prior to screening due to intolerance or lack of efficacy

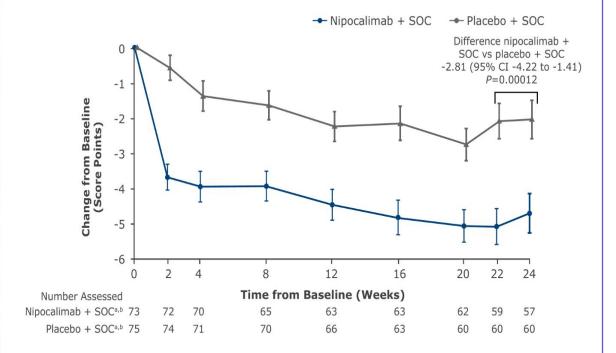

<sup>&</sup>lt;sup>a</sup>Patients continued their background, stable SOC myasthenia gravis therapies, with no changes permitted during the double-blind phase

bPatients whot withdraw or discontinue after receiving any amount of study invervention will be required to complete a safety follow-up visit 8 weeks after the last infusion.

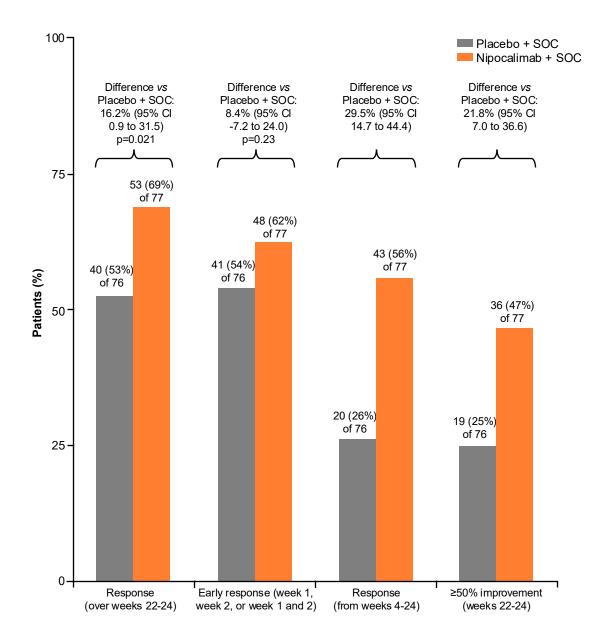
## Vivacity-MG3: Significant Improvement in MG-ADL and QMG With Nipocalimab

Nipocalimab led to sustained improvements from baseline in MG-ADL and QMG in a broad antibody-positive population

### CFB in MG-ADL Over 24 Weeks




## Average CFB in MG-ADL by Antibody Status


| Subgroup          | N  | Nipocalimab + SOC<br>LS Mean (95% CI) | N  | Placebo + SOC<br>LS Mean (95% CI) | Between-Group<br>Difference (95% CI) |
|-------------------|----|---------------------------------------|----|-----------------------------------|--------------------------------------|
| Anti-AChR+        | 63 | -5.06 (-5.78 to -4.33)                | 70 | -3.44 (-4.13 to -2.74)            | -1.62 (-2.62 to -0.62)               |
| Anti-MuSK+        | 12 | -3.79 (-5.47 to -2.10)                | 4  | -0.25 (-3.02 to 2.53)             | -3.54 (-6.78 to -0.30)               |
| Antibody-negative | 20 | -3.30 (-4.62 to -1.99)                | 22 | -3.23 (-4.46 to -1.99)            | -0.08 (-1.87 to 1.71)                |

## **Vivacity-MG3: Key Secondary Endpoints**

## Change in QMG Over 24 weeks



## **Responder Assessment**



#### Phase 3 Vivacity, MG-ADL Total Score by Subgroups

MG-ADL Total Score: Analysis of Average Change From Baseline Over Weeks 22, 23, and 24 by Antibody Status\*1

|                       | Nipocalimab + SOC |                               | Placebo + SOC |                               | Between-Group Difference                       |
|-----------------------|-------------------|-------------------------------|---------------|-------------------------------|------------------------------------------------|
| Subgroup <sup>†</sup> | n                 | LS Mean <sup>†</sup> (95% CI) | n             | LS Mean <sup>†</sup> (95% CI) | Between-Group Difference <sup>‡</sup> (95% CI) |
| Anti-AChR+            | 63                | -5.06 (-5.78, -4.33)          | 70            | -3.44 (-4.13, -2.74)          | -1.62 (-2.62, -0.62)                           |
| Anti-MuSK+            | 12                | -3.79 (-5.47, -2.10)          | 4             | -0.25 (-3.02, 2.53)           | -3.54 (-6.78, -0.30)                           |
| Antibody-<br>negative | 20                | -3.30 (-4.62, -1.99)          | 22            | -3.23 (-4.46, -1.99)          | -0.08 (-1.87 ,1.71)                            |

- The primary endpoint population was participants with antibody-positive gMG including anti-AChR, anti-MuSK, and anti-LRP4<sup>2</sup>
- Subgroup analysis showed consistent efficacy results in AChR antibody-positive and MuSK antibody-positive populations<sup>‡</sup>, while no statistically significant difference was seen in the antibody-negative population<sup>2</sup>

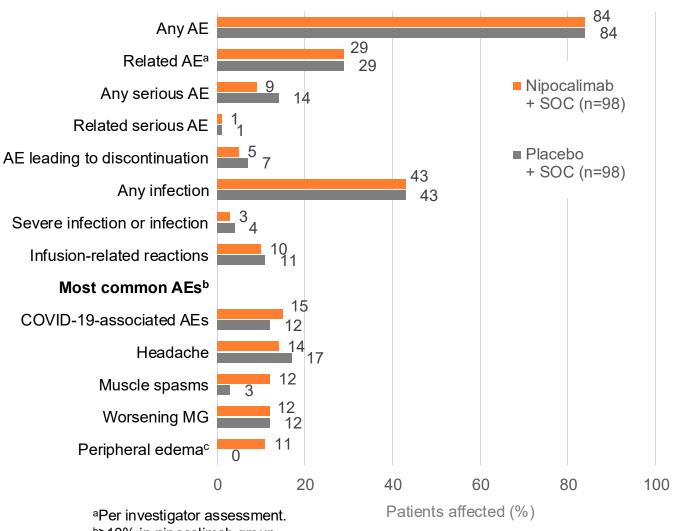
<sup>\*</sup>AChR, antibody positive, MuSK antibody positive, or antibody negative. †LS mean estimates and between-group differences are estimated from an MMRM, with factors for treatment group, autoantibody (anti-AChR+, anti-MuSK+, anti-LRP4+, antibody-negative), region, visit, treatment-by-visit interaction, treatment-by-autoantibody interaction, and treatment-by-autoantibody-by-visit interaction and baseline MG-ADL as a covariate. ‡Results for the anti-LRP4+ subgroup are not displayed because there were <4 anti-LPR4+ participants in both treatment groups.

AChR, acetylcholine receptor; CI, confidence interval; gMG, generalized myasthenia gravis; LRP4, low-density lipoprotein receptor 4; LS, least squares; MG-ADL, Myasthenia Gravis Activities of Daily

Living; MMRM, mixed-model repeated measures; MuSK, muscle-specific tyrosine kinase; n, number indicating a subset of the total population; SOC, standard-of-care. 1. Antozzi C, et al. *Lancet Neurol*. 2025;24(suppl 10):S1-S163. 2. Antozzi C, et al. *Lancet Neurol*. 2025;24(2):105-116.

#### **Vivacity Efficacy Conclusions**

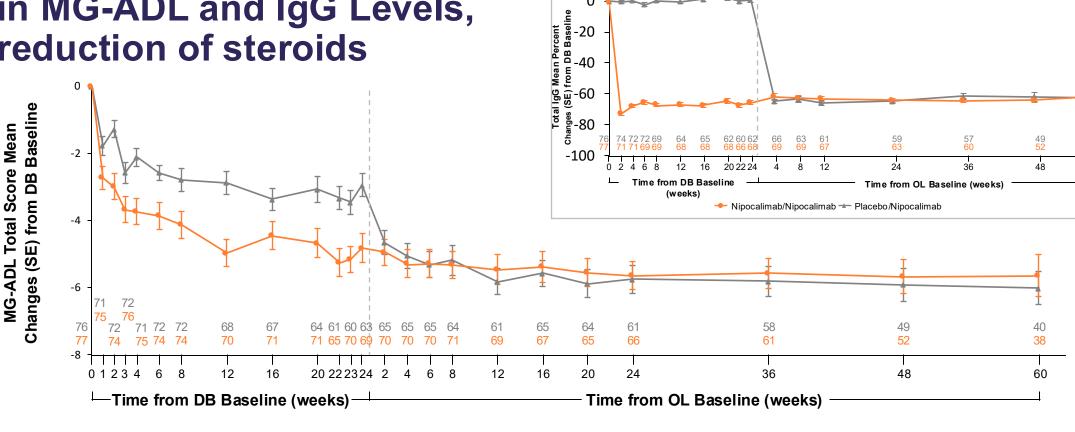
- ── Vivacity-MG shows sustained efficacy through 6 months of dosing
  - Broad autoantibody-positive (anti-AChR+, anti-MuSK+, and anti-LRP4+) gMG participant population, statistically significant and clinically meaningful improvement in:
    - MG-ADL and QMGS mean change from baseline
    - Greater responder rate (MG-ADL >2 points improvement)
- More participants treated with nipocalimab achieved sustained response from week 4-24 and had ≥50% improvement in MG-ADL compared to placebo


### Vivacity Safety **Summary**

Safety analysis population: all patients (antibody-positive and antibody-negative) who received ≥1 dose of either study drug

Nipocalimab generally well tolerated in gMG participants

- Urinary tract infection was reported in 5% (5/98) of patients receiving nipocalimab compared to 2% (2/98) of patients receiving placebo.<sup>4</sup>
- One patient receiving nipocalimab experienced myasthenic crisis compared to 2 patients receiving placebo, and 5 and 7 patients received treatment with rescue medications, respectively.4


#### **Treatment-Emergent AEs in the Double-blind Phase**



b≥10% in nipocalimab group

<sup>&</sup>lt;sup>c</sup>All patients at the time of edema had albumin levels within normal limits (33-49, 33-46, and 30-46 g/L for patients aged 18-69, 70-80 and >80 years, respectively

## **OLE, Change from Baseline** in MG-ADL and IgG Levels, reduction of steroids



45% (40/89) of participants receiving steroids at open-label baseline were able to decrease or discontinue steroids at data cutoff\*

→ Placebo/Nipocalimab

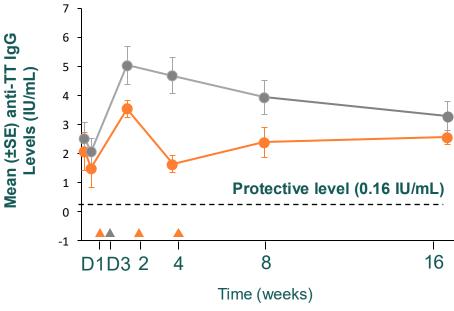
Among these patients the mean dose of prednisone (mg eg per day) decreased from 23 to 10<sup>†</sup>

Nipocalimab/Nipocalimab

Efficacy was maintained in participants who decreased/discontinued steroids

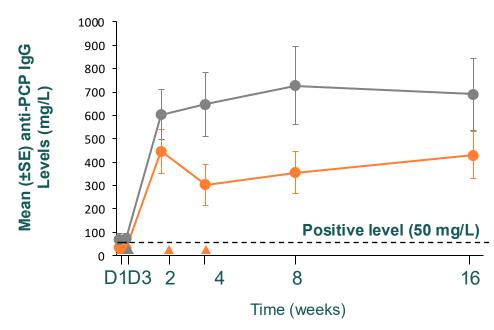
Note: p-value for comparison of MG-ADL total score change from baseline significantly different from zero using a one-sample t-test. \*p<0.001. DB, double-blind; MG-ADL, Myasthenia Gravis - Activities of Daily Living; OL, open-label; OLE, open-label extension; QMG, Quantitative Myasthenia Gravis; SE, standard error; SOC, standard-of- care; W, week






Poll #6: Which of the following is TRUE regarding vaccination and FcRn inhibitor therapy in MG?




#### Nipocalimab Anti-Vaccine Antibody Responses





- Active arm (Nipocalimab + Tdap + PPSV®23)
- Control arm (Tdap + PPSV®23)

# Response to T-Cell-Independent (PPSV®23) Vaccine (Completers Analysis Set)



- ▲ Nipocalimab administration
- ▲ Tdap and PPSV®23 administration

<sup>\*</sup>Except 1 participant in the active arm at week 4.

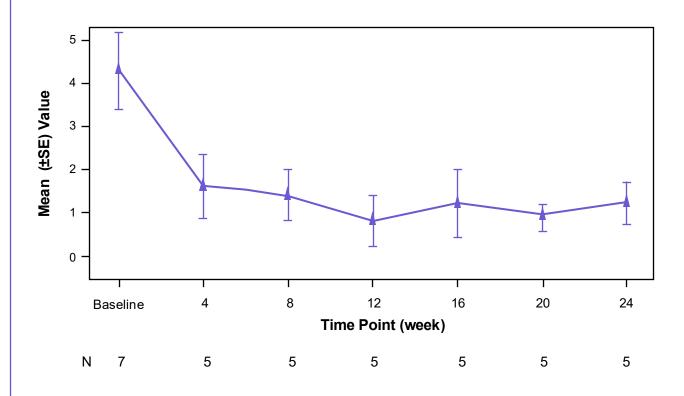
D, day; IgG. Immunoglobulin G; IQR, interquartile range; PCP, pneumococcal; PPSV®23, 23-polysaccharide pneumococcal vaccine; SE, standard error; Tdap, tetanus toxoid, diphtheria, and acellular pertussis vaccine; TT, tetanus toxoid.

#### Vaccination Considerations for Fc Receptor Inhibitors

Administer vaccines according to national immunization guidelines at least 4 weeks before initiating treatment with any FcRn inhibitor.

Consider checking vaccine serologic titers when clinically indicated, especially for high-risk patients or those undergoing prolonged treatment.

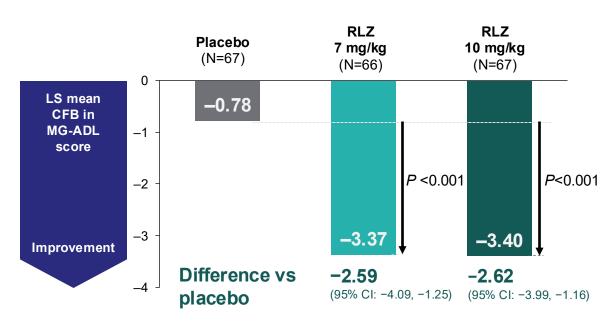
Vaccination with live or live attenuated vaccines is not recommended during active treatment with FcRn inhibitors.


In patients received cyclic therapy, inactivated or subunit vaccines should ideally be administered at least 2 weeks after the last dose in a treatment cycle and 4 weeks before starting the next cycle

#### Phase 2/3 Vibrance-MG Study

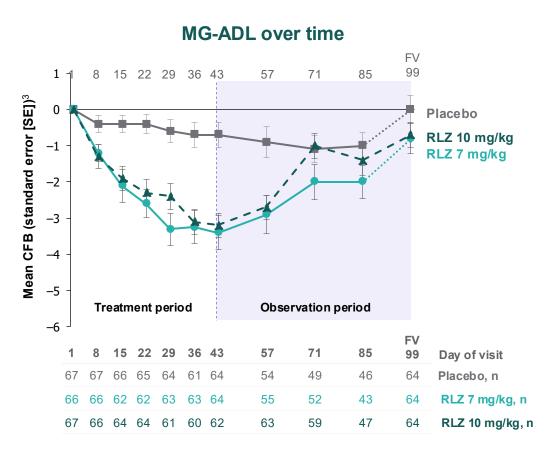
# A global, multicenter, open-label, phase 2/3 study of nipocalimab + SOC in children and adolescents with gMG

- Phase 2/3 open-label multicenter trial in children aged 2 to <18 years with gMG</li>
  - Dosing: 30 mg/kg IV loading dose at day 1, then 15 mg/kg Q2W or 30 mg/kg Q4W
  - IgG reduction at week 24: -69% (SE 7.6), primary endpoint met
- MG-ADL and QMG scores showed sustained improvement through week 24
  - 80% of participants achieved minimal symptom expression (MG-ADL = 0/1)
- No SAEs or treatment discontinuations reported


#### Mean MG-ADL Total Score Over Time



#### Rozanolixizumab (RLZ): Phase 3 MycarinG Study


Clinically meaningful and statistically significant improvements from baseline with RLZ 7 mg/kg and 10 mg/kg sc compared with placebo in the overall population.

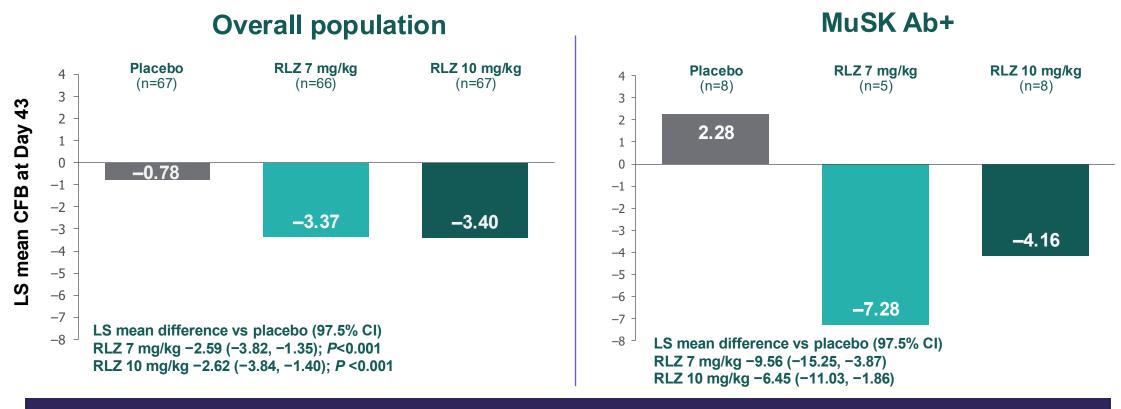
Change from baseline (CFB) in MG-ADL at Day 43



#### Key inclusion criteria

- Aged ≥18 years
- AChR Ab+ or MuSK Ab+ gMG\*
- · MGFA Class II to IVa
- MG-ADL score ≥3 (≥3 points from non-ocular symptoms) and QMG score ≥11
- Considered for additional treatment (eg, IVIg or PLEX)



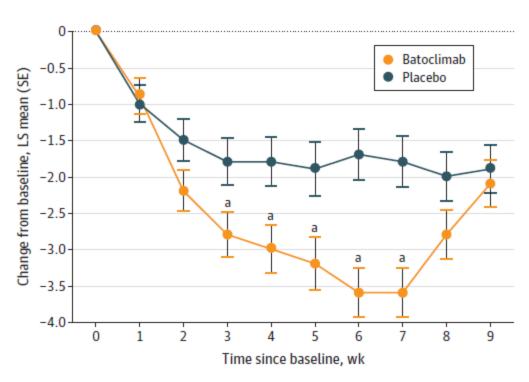

All participants receiving RLZ mean MG-ADL baseline value (standard deviation [SD]) 8.3 (3.4)

Adapted from: Bril V, et al. Lancet Neurol. 2023;22:383-394; Habib A, et al. Presented at: MGFA Scientific Session 2022; September 21, 2022; Nashville, TN. Poster 16; Bril V, et al. Presented at: MGFA Scientific Session 2022; September 21, 2022; Nashville, TN. Poster 25; Vissing J, et al. Presented at: European Academy of Neurology (EAN) 2022; June 25-28, 2022.

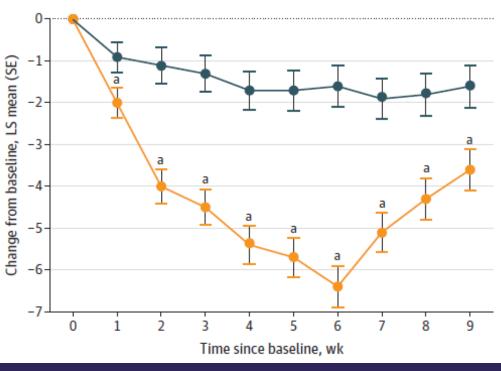
#### MycarinG: MG-ADL Improvements in MuSK Ab+ Patients

Change from baseline to Day 43 in MG-ADL was higher with both RLZ dose groups vs placebo in patients with MuSK Ab+ gMG, as well as patients with AChR Ab+ gMG

AChR Ab+ gMG: Change from baseline to Day 43 in MG-ADL → RLZ 7 mg/kg: –3.03, RLZ 10 mg/kg: –3.36, placebo: –1.10




Overview of TEAEs in the Overall and MuSK Ab+ Populations Most TEAEs were mild to moderate in severity.


#### Batoclimab: Improvement in MG-ADL and QMG Versus Placebo (Cycle 1)

Multicenter phase 3 clinical trial conducted at 27 centers in China, enrolling 131 patients 18 years or older with generalized MG who were antibody positive

#### **Change in MG-ADL Through Cycle 1**



#### **Change in QMG Through Cycle 1**



Global phase 3 FLEX trial of batoclimab as induction and maintenance therapy in gMG is ongoing

Enrolling ~180 AChR Ab+ and ~60 AChR Ab- patients

#### **Conclusions**

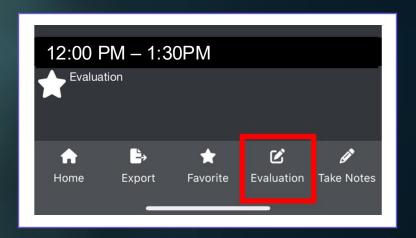
- Mechanism of Action: FcRn inhibitors block IgG recycling, lowering pathogenic autoantibodies and improving neuromuscular transmission.
- Efficacy: Phase 3 trials of efgartigimod, rozanolixizumab, nipocalimab demonstrated significant improvements in MG-ADL and QMG scores.
- Steroid-Sparing & MSE Achievement: Up to 40% of patients achieve minimal symptom expression; many reduce or discontinue corticosteroids.
- Pediatric & Special Populations: Vibrance-MG (nipocalimab) shows promising efficacy and safety in children with gMG.
- ── Vaccination Guidance: Inactivated vaccines are safe; live vaccines should be avoided during therapy. Protective IgG responses are largely preserved



Emerging Biological Therapies and Clinical Frontiers

# **Q&A Session**




# Audience Q&A





# **EVALUATION**

- Open the CNSF Congress App on your phone
- 2. Find this event under Browse Schedule
- 3. Click the Evaluation icon at the bottom



